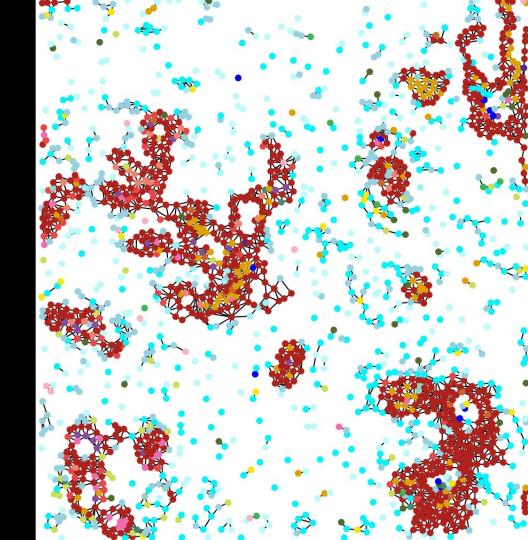
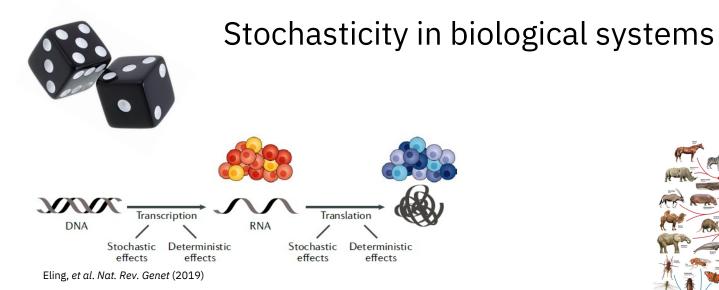
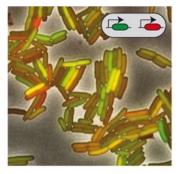
Personalized cancer therapies based on spatial heterogeneity of the tumor ecosystem

Marianna Rapsomaniki AI for Single-Cell Research IBM **Research** Europe | Zurich



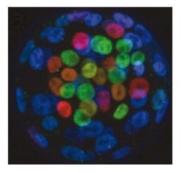


Gene expression



Elowitz, et al. Science (2002)

Differentiation



Eldar, et al. Nature (2010)

Pattern formation

Evolution

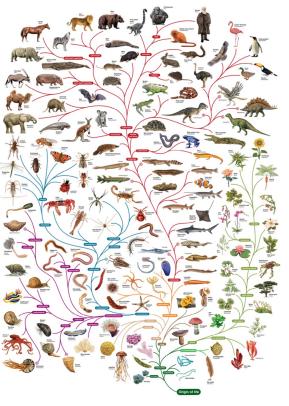
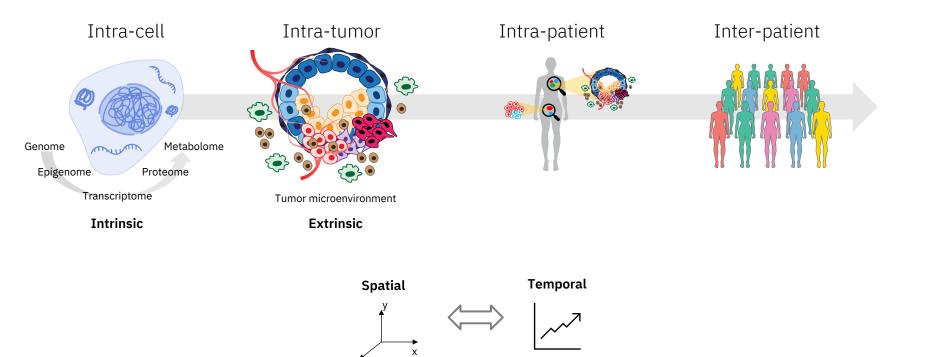


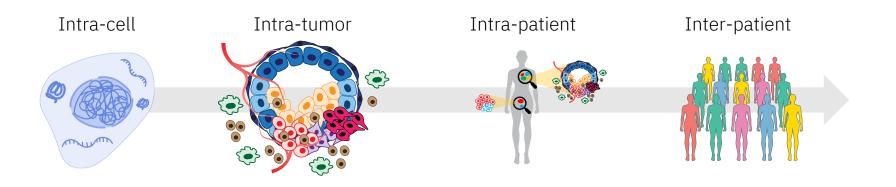
Image credit: https://ifisc.uib-csic.es/

Tumor heterogeneity across scales



z

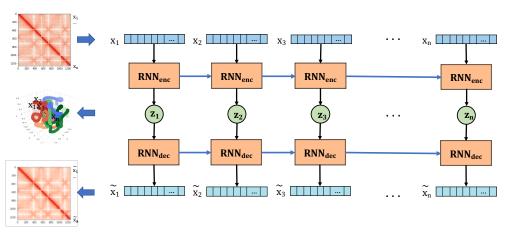
Tumor heterogeneity across scales



Heterogeneity in chromatin folding

Cristina Cristescu

REACH-3D: inference of 3D chromatin structure from Hi-C data



Temporal heterogeneity across the cell cycle

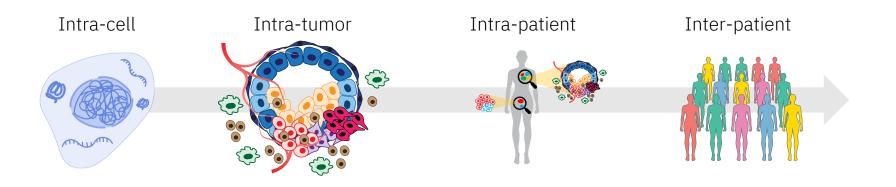


Prediction of 3D chromatin structure of the full fission yeast genome across different timepoints of its cell cycle

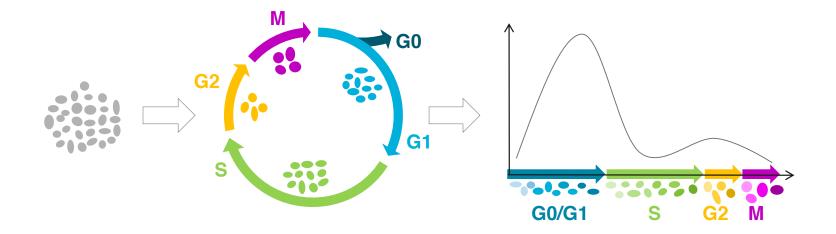
Papers:

Cristescu *et al*, (2018) Inference of 3D chromatin structure and its temporal behavior, NeurIPS MLMM Workshop Meynier and Rapsomaniki (2021). Modeling the 3D Chromatin Structure from Hi-C Data with Transfer Learning. LMRL NeurIPS workshop

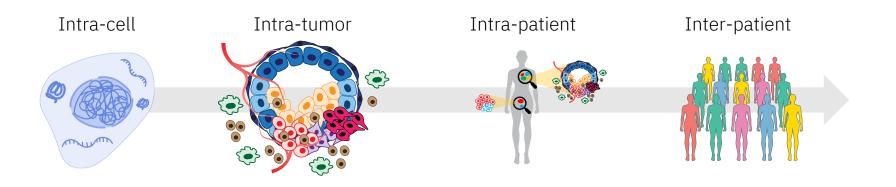
Tumor heterogeneity across scales



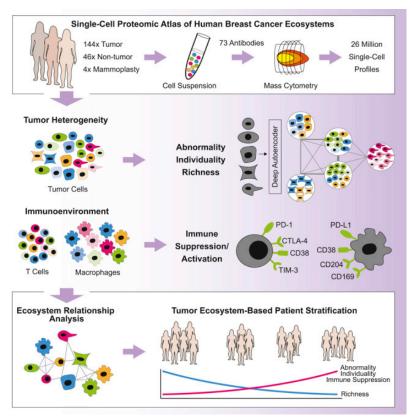
CellCycleTRACER | Trajectories of cell cycle evolution



Tumor heterogeneity across scales



A Single-Cell Atlas of Breast Cancer Ecosystems



Paper: Wagner et al., (2019), Cell

Richness	Abnormality	Individuality
How many cell types exist in the tumor ecosystem?	How much have the tumor cells deviated from non- tumor?	How distinct is the tumor within the cohort?

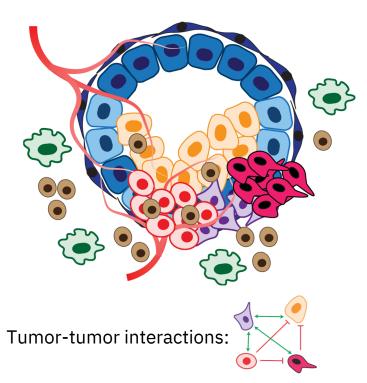
- Ecosystem-based approach enables patient stratification
- Aggressive tumors are low in richness and high in abnormality and individuality: few, highly abnormal cell subtypes

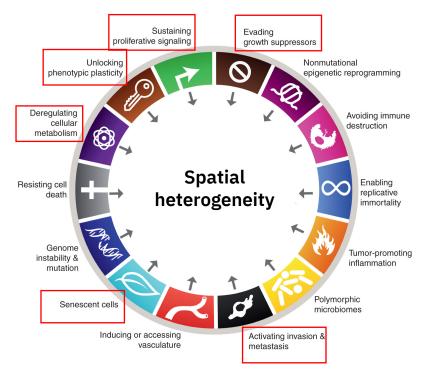


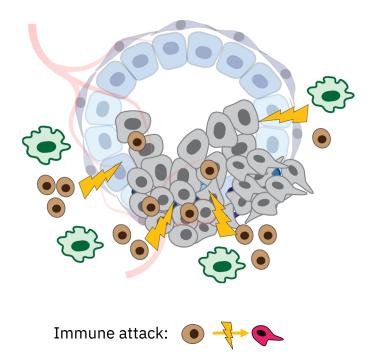
Normal cells

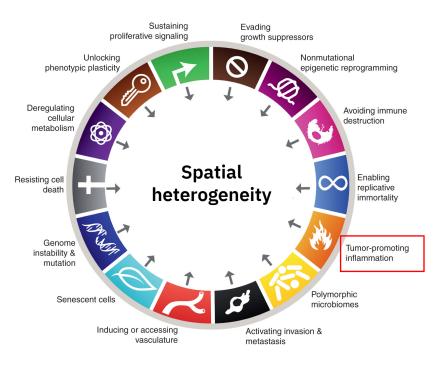
Tumor cells

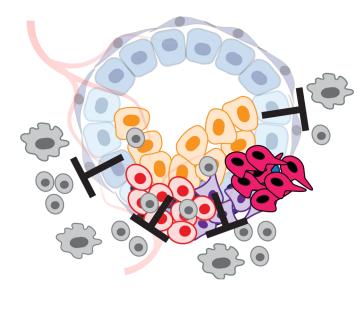
Immune cells



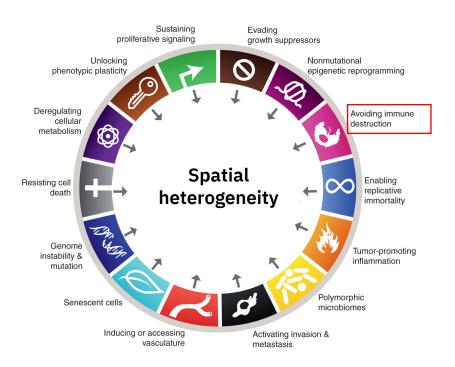


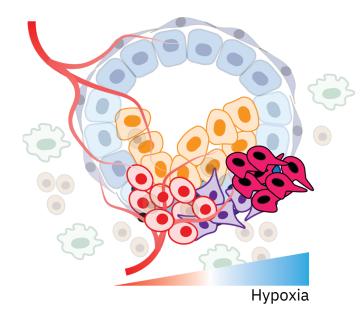




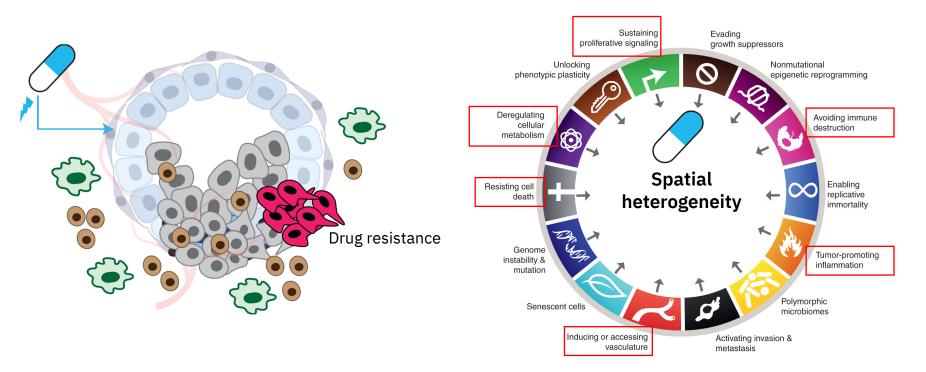


Immune suppresion:

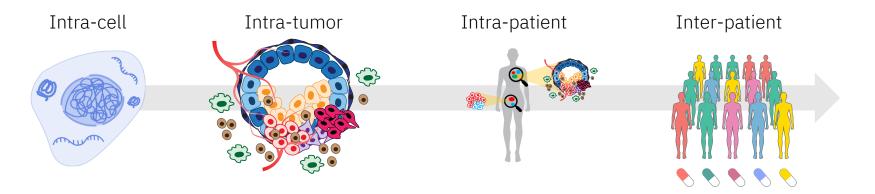








Spatial tumor heterogeneity across scales



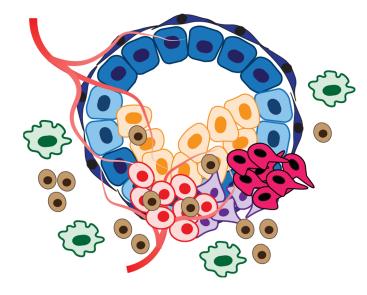
How do cancer subpopulations interact with each other and the TME?

How do they evade immune destruction and treatments?

How does the TME influence tumor growth?

Spatial heterogeneity as an **opportunity** to enable novel biomarker and therapeutic discovery

Spatial omics: the new frontier



Spatial transcriptomics:

e.g., smFISH, MERFISH, seqFISH, LCM, Visium, FISSEQ

Spatial proteomics:

e.g., mIHC, CycIF, CODEX, ImmunoSABER, IMC, MIBI

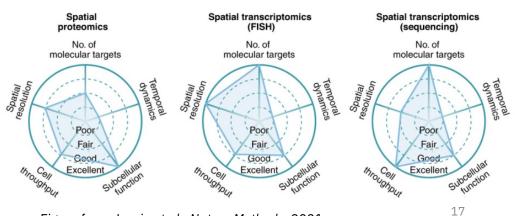
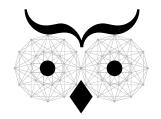
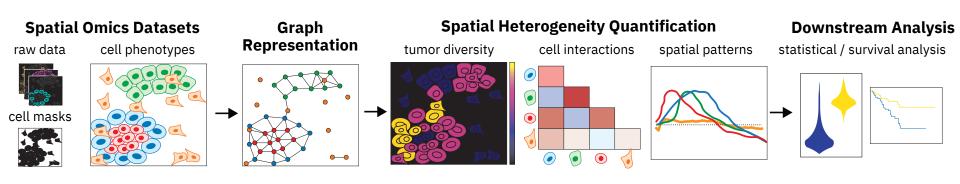


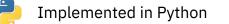
Figure from: Lewis et al., Nature Methods, 2021



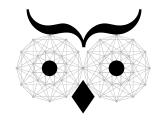
ATHENA

Analysis of Tumor Heterogeneity from Spatial Omics Measurements





Adriano Martinelli

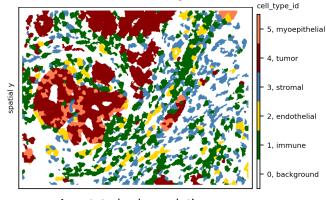


Gr Spatial Omics Datasets Repres

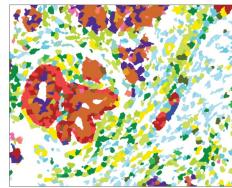
Spatial Heterogeneity Quantification

Downstream Analysis

... and cancer ecosystems

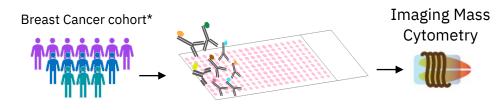


Annotated subpopulations

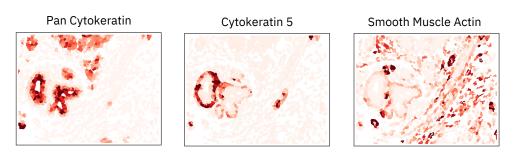


Endothelial Macrophages T cells B cells Stromal CK¹0^w HR¹0^w CK7 CK¹^h Cadh Basal CK Proliferative Apoptotic Myoepithelial CK¹0^w HR^{hi} p53 HR¹0^w CK CK HR HR^{hi} CK

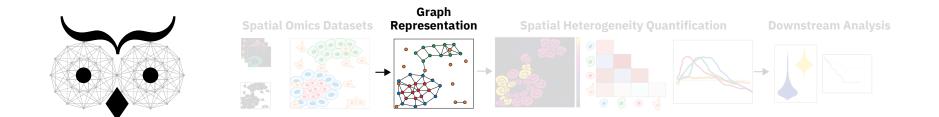
From multiplexed imaging...



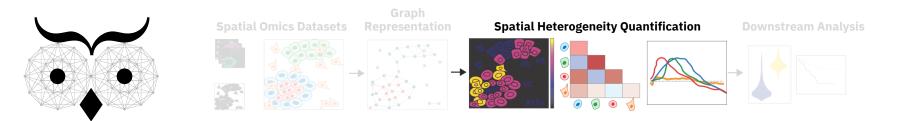
... to single-cell spatial proteomics



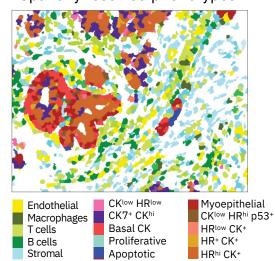
*Example data from Jackson et al., Nature, 2019

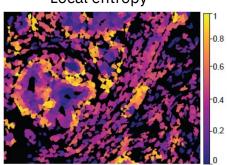


Radius Graph Contact Graph *k*-NN Graph

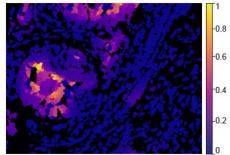


Spatially resolved phenotypes

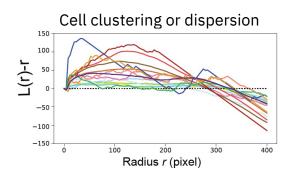




Immune infiltration

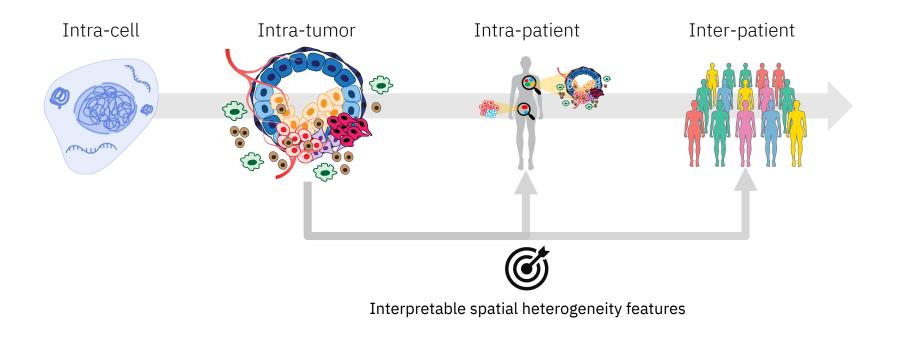


Cell interaction scores

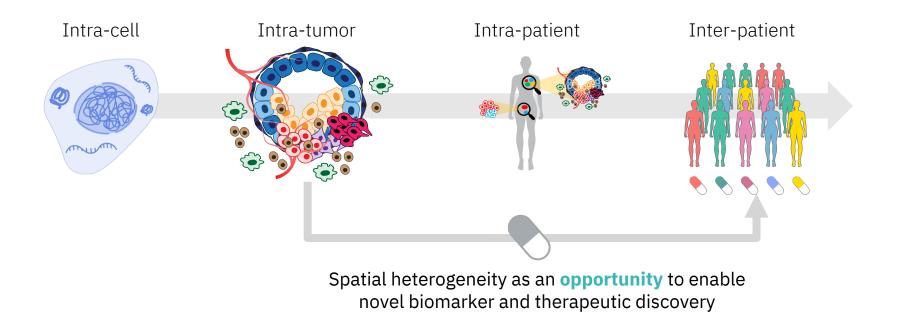


Local entropy

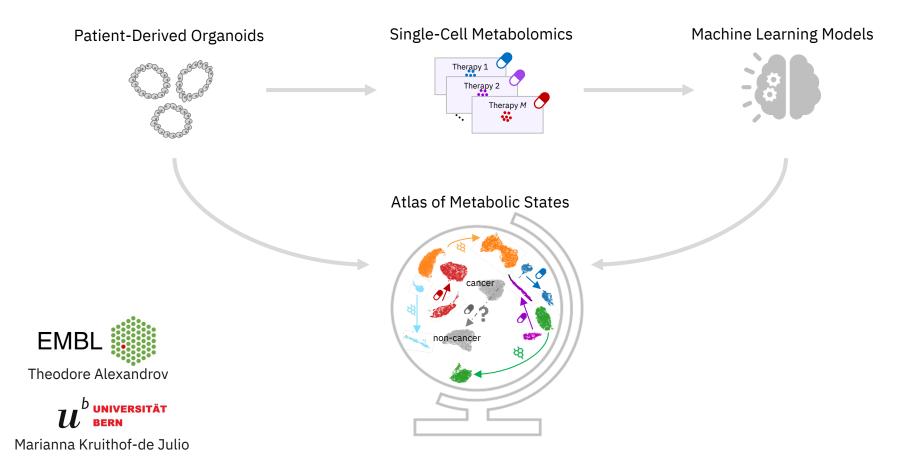
Towards heterogeneity-aware precision therapies



Towards heterogeneity-aware precision therapies



PROMETEX | Metabolically-instructed personalized therapy selection for prostate cancer

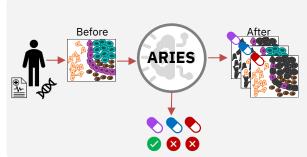


ARIES | AI-driven personalized therapy approach based on PCa ecosystem

Prostate Cancer Cohort

Spatial Perturbation Atlas

Graph Representation Learning



In silico prediction of drug perturbations Personalized drug response prediction

Marianna Kruithof-de Julio

Acknowledgements

Zurich

Bodenmiller Lab

Xiaokang Lun

Johanna Wagner

Stephane Chevrier

Bernd Bodenmiller

IBM Research Europe | Zurich

AI for Single-Cell Research Team

Adriano Martinelli

Maria Gabrani Maria Rodriguez Martinez Michal Rosen-Zvi Matteo Manica Antonio Foncubierta Joris Cadow Jannis Born Govind Kaigala

Pushpak Pati

Elina Koletou Jonas Windhager Amelia Paine Cristina Cristescu Stephan Seebacher Tristan Meynier Aditya Kashyap Anna Fomitcheva Vesna Barros Guillaume Jaume

External Collaborators

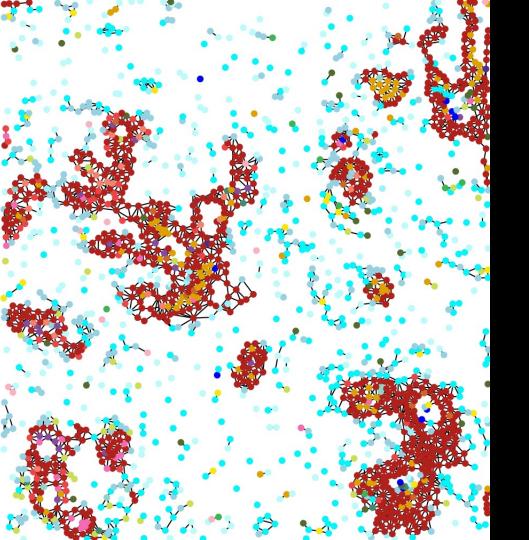
u^{b} universität bern

Urogenus lab Marianna Kruithof-de Julio Katja Ovchinnikova Panagiotis Chouvardas Eugenio Zoni

Theodore Alexandrov

Panagiotis Chouvardas Eugenio Zoni

Swiss National Science Foundation



Thank you for the attention!

Marianna Rapsomaniki

AI for Single-Cell Research IBM **Research** Europe | Zurich

<u>aap@zurich.ibm.com</u>
@marianna_raps