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SmartRail 4.0
Goals and Vision 2040

• Densest mixed rail network worldwide
• System operating close to capacity

Goals and Vision 2040!
• Increase capacity
• Increase safety
• Reduce costs
• Improve punctuality 
• Better customer service



Increase safety and capacity by precise train localization
Reliable localization using sensor fusion
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Optical train localization
Motivation and advantages

Motivation
• Current approach (Balise) depends on additional 

external hardware 
• In dense urban environments (near stations) GNSS 

not precise enough for lateral localization (track 
wise positioning)

• GNSS requires permanent connection

• GNSS interference (jam signals) in urban 
environments

• Odometry and IMU have to be periodically 
recalibrated (w. GNSS or Balise)

• Position of Balise is not exact and can vary with 
time



Iteration 1:
Network learns ‘tracks’

Initial setup
• Training data from 

measurement vehicle
• Front camera

• YOLO CNN for object 
detection



Iteration 1:
Network learns ‘tracks’

• Track selectivity
• Tested at different weather conditions (fog, snow, …)
• Classification of other objects (signals, balise, …)

þ
þ

recognition rate > 95%

þ



Iteration 2:
Track selective mapping

• Integration via topology 
database (DfA) to obtain 
track layout

• Longitudinal position from 
GNSS (square in track 
topology)

• …



Iteration 2:
Track selective mapping

Matcher algorithm
/ topology lookup

Track selective train localization

• Integration via topology 
database (DfA) to obtain 
track layout

• Longitudinal position from 
GNSS (square in track 
topology)

• Lateral position (track 
selectivity) from optical 
detection

• Integration of longitudinal 
and lateral positions 
matcher algorithm / 
topology lookup



Iteration 3:
GNSS independent longitudinal position

Detect longitudinal position by km-sign on poles
• Pole position is exactly measured in topology database

• Poles have short distance to train
• Km-signs not readable from front camera

> use 45° side camera
• YOLO network to detect and read km-signs
• Obtain longitudinal position by topology database 

mapping algorithm

Wiener deconvolution

filter



Iteration 3:
GNSS independent longitudinal position



Iteration 4 (future work):
Exact longitudinal position by train-pole distance estimation

Optical distance estimation

• Stereo camera system (front and 45° side camera)

• Limited recognition of km-sign if front camera

• Only limited overlap of field of view between the two 
cameras

• Requires exact relative calibration of cameras

• Stereo camera system (two 45° side cameras)

• Requires additional camera and exact relative camera 
calibration

• Sequential information from 45° side camera

• Requires additional sensor to estimate movement 
between sequential images

• Single image from 45° side camera

• Distance based on size of km-sign

• Distance based on geometric information (pole position 
in image and topology database)

• Distance from Deep Learning approach



Iteration 4 (future work):
Prediction of pathway / position
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Optical pathway prediction by recognizing tracks and switch 
positions

• Recognition / segmentation of active track
• Recognition of switch position

• Matching with topology can lead to optical pathway / 
position prediction

• Additionally, switch-train distance estimation can lead to 
improved longitudinal position
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Iteration 4 (future work):
Prediction of pathway / position

Current status:
• Track segmentation using CNN’s

• Semantic segmentation trained on RailSem19* 
data-set 

• Switch position not viable by classification
> Use segmentation approach
> Generate segmentation data-set with only 
active track

O. Zendel, M. Murschitz, M.Zeilinger, D. Steininger, S. Abbasi, C. Beleznai: 
RailSem19: A Dataset for Semantic Rail Scene Understanding. CVPR Workshops 
2019: 32-40

*
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