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Geant4 : a simulation toolkit %QGEANT4

A SIMULATION TOOLKIT

Website

e Toolkit born in the 1990s, providing a highly flexible simulation framework in C++

e (Geant4 mission

o  Provide production-quality simulation toolkit and support to various experiments
o Improve the physics models with better precision and energy range extensions
o Improve the overall computational performance of simulation

o Provide long-term maintenance & sustainability


https://geant4.web.cern.ch/node/1

Simulating particle interactions with Geant4 (Full Simulation)
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The need for fast simulation methods at Large Hadron Collider
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The need for fast simulation methods at future experiments
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https://arxiv.org/pdf/1606.09408.pdf

How to fast simulate particles? Machine Learning
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Shortcut standard tracking & detailed simulation  [Geant4]



# MLFastCaloSim
def MLFastCaloSim(geometry, type,enerqgy,angle):
return P(shower[geometry, type,energy,angle)

Generalizable & reusable solution

e Trained on multiple detector geometries
e Adapt quickly to a new geometry



From ML training to Geant4 fast simulation

Geant4 Simulation ML workflow
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Calorimeter geometries (1/2)
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Calorimeter geometries (2/2)

Number of readout cellsisRx P xN =18 x 50 x 45

R slices

N layers
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Meta Learning: learn to learn “fast”

Step 2 : Adaptation
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https://arxiv.org/pdf/1904.05046.pdf

Reptile

Meta Learning : Reptile

On First-Order Meta-Learning Algorithms

Alex Nichol and Joshua Achiam and John Schulman
OpenAl
{alex, jachiam, joschu}@openai.com

arXiv:1803.02999
Abstract

This paper considers meta-learning problems, where there is a distribution of tasks, and we
would like to obtain an agent that performs well (i.e., learns quickly) when presented with a
previously unseen task sampled from this distribution. We analyze a family of algorithms for
learning a parameter initialization that can be fine-tuned quickly on a new task, using only first-
order derivatives for the meta-learning updates. This family includes and generalizes first-order
MAML, an approximation to MAML obtained by ignoring second-order derivatives. It also
includes Reptile, a new algorithm that we introduce here, which works by repeatedly sampling
a task, training on it, and moving the initialization towards the trained weights on that task.
We expand on the results from Finn et al. showing that first-order meta-learning algorithms
perform well on some well-established benchmarks for few-shot classification, and we provide
theoretical analysis aimed at understanding why these algorithms work.

MAML

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
arXiv:1703.03400

We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with
gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforcement

Chelsea Finn, Pieter Abbeel, Sergey Levine

learning. The goal of meta-learning is to train a model on a variety of learning tasks, such that it can solve new learning tasks using
only a small number of training samples. In our approach, the parameters of the model are explicitly trained such that a small number
of gradient steps with a small amount of training data from a new task will produce good generalization performance on that task. In
effect, our method trains the model to be easy to fine-tune. We demonstrate that this approach leads to state-of-the-art performance
on two few-shot image classification benchmarks, produces good results on few-shot regression, and accelerates fine-tuning for policy
gradient reinforcement learning with neural network policies.

Algorithm 1 Reptile (serial version)

Initialize ¢, the vector of initial parameters

for iteration = 1,2,... do
Sample task 7, corresponding to loss L, on weight vectors ¢
Compute ¢ = UF(¢), denoting k steps of SGD or Adam
Update ¢ + ¢ + €(¢ — @)

end for
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https://arxiv.org/abs/1703.03400
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Meta learning for fast shower simulation
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Available on Zenoodo : High Granularity Electromagnetic Calorimeter Shower Images
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https://zenodo.org/record/6082201#.YkA1HC2w0lo

P(shower [geometry, energy,angle)

Meta-training step

e Energy range: 1GeV-1TeV (discrete values in powers of 2)

e Incident angle : 50-90° (step of 10°)

e Generative model : Variational Autoencoder (VAE)
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P(shower [geometry, energy,angle)

Adaptation step on a new geometry
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e Meta training step: model trained on two detector geometries (SiW & SciPb)
e Fast adaptation step: the pretrained model is adapted to the PBWO4 geometry (360 steps takes 18s

on a CPU machine)
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P(shower [geometry, energy,angle)

Adaptation vs traditional training

e, 64 [GeV], 90°, PBW04
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Meta learning - Adaptation

Meta training using geometries & adaptation on a °

new geometry

400 steps of adaptation : 20.48 s

Traditional training

Training on a single geometry with checkpoint saved

every 100 epochs
400 steps of training : 1200 s (around 3h for 3900 steps)
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P(shower [geometry, energy,angle, type)

Condition on the particle type
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Summary & conclusion

Fast simulation techniques are needed to cope with the new challenges for

detector simulation

ML approaches are largely investigated in high energy physics for fast calorimeter

simulation
o Experiment specific models
o Generalizable simulator
m Meta learning approach for multiple detector geometry modeling

m Ongoing work on validation for use on realistic geometries (Future Circular

Colliders)

o Very promising results and some models are now already in production!
19



CalloChallenge : first-ever Fast Calorimeter Simulation Challenge!

can be downloaded from Zenodo with DOI 10.5281/zenodo.6234054. It is based on
the ATLAS GEANT4 open datasets that were published here. There are three files, two for
photons and one for charged pions. Each dataset contains the voxelised shower information
obtained from single particles produced at the calorimeter surface in the n range (0.2-0.25)
and simulated in the ATLAS detector. There are 15 incident energies from 256 MeV up to 4 TeV
produced in powers of two. 10k events are available in each sample with the exception of
those at higher energies that have a lower statistics. These samples were used to train the
corresponding two GANs presented in the AtlFast3 paper SIMU-2018-04 and in the
FastCaloGAN note ATL-SOFT-PUB-2020-006. The number of radial and angular_bins varies
from layer ter and is also different for photons and pions, resulting in for
53

photons and|533|for pions.

can be downloaded from Zenodo with DOI 10.5281/zenodo.6366270. It consists of
two files with 100k GEANT4-simulated showers of electrons each with energies sampled from
a log-uniform distribution ranging from 1 GeV to 1 TeV. The detector has a concentric cylinder
geometry with 45 layers, where each layer consists of active (silicon) and passive (tungesten)
material. Each layer has 144 readout cells, 9 in radial and 16 in angular direction, yielding a

total of 9x16x45 =|6480 voxels.|One of file should be used for training the generative model,

the other one serves as reference file in evaluation.

can be downloaded from Zenodo with DOI 10.5281/zenodo.6366323. It consists of
4 files, each one contains 50k GEANT4-simulated eletron showers with energies sampled from
a log-uniform distribution ranging from 1 GeV to 1 TeV. The detector geometry is similar to
dataset 2, but has a much higher granularity. Each of the 45 layer has now 18 radial and 50
angular bins, totalling 18x50x45 This dataset was produced using the Par04
Geant4 example. Two of the files should be used for training the generative model, the other
two serve as reference files in evaluation.

https://calochallenge.qithub.io/homepage/

CEg
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Multi-task learning vs Meta-learning

Multi-task learning

Meta-learning
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https://arxiv.org/pdf/1904.05046.pdf

P(shower [geometry, energy,angle)

Validation on a meta-training geometry
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Adaptation across energies
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Adaptation across angles
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Total energy distribution, e, 1 TeV, 90°
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Improvement with longer steps
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Adaptation vs traditional training
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P(shower [geometry, energy,angle)

Adaptation step on a new geometry : new particle type
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e Meta training step: model trained on two detector geometries (SiW & SciPb)

e Fast adaptation step: the pretrained model is adapted to the PBWO4 geometry 29



Inference in G4 after fast adaptation to a new geometry
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Par0O4 example

e Fast simulation with ML within Geant4
e New Par04 extended example in Geant4 11.0

examples/extended/parameterisation/Par04

e Demonstrates how to incorporate inference libraries

o ONNX Runtime
o LWTNN

e The ML trained on 2 provided geometries,
conditioned on the energy and angle of the particle

e Example can run full and fast simulation (if any of
the inference libraries is available, e.g. via LCG)

Name

C+ ParO4Actioninitialisation.cc

C++ Par04DefineMeshModel.cc

C+ Par04DetectorConstruction.cc

C+ Par04DetectorMessenger.cc

C+ ParO4EventAction.cc

C+ Par04Eventinformation.cc

C+ ParO4Hit.cc

C+ ParO4InferenceMessenger.cc

C+ ParO4InferenceSetup.cc

C+ ParO4Lwtnninference.cc

C+ Par04MLFastSimModel.cc

C++ Par040nnxInference.cc

C++ ParO4PrimaryGeneratorAction.cc

C+ Par0O4RunAction.cc

C++ Par04SensitiveDetector.cc
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https://gitlab.cern.ch/geant4/geant4/-/tree/master/examples/extended/parameterisations/Par04
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