Learning Task Specifications for Reinforcement Learning from Human Feedback

David Lindner Microsoft Swiss JRC Workshop, 29.03.2022

Based on joint work with Matteo Turchetta, Sebastian Tschiatschek, Kamil Ciosek, Katja Hofmann, and Andreas Krause

earning & Adaptive Systems

Where do rewards come from?

Well specified reward function

Autonomous Driving

Reward function?

Virtual Assistant

Learning from human feedback

T = 4

ETH zürich

Considering potentially optimal policies improves sample efficiency

• 🍐 will never be collected

ETH zürich 🧐

D.L., M.T., S.T, K.C., A.K, "Information directed reward learning for reinforcement learning", NeurIPS 2021

How should we select which queries to make?

1. Consider potentially optimal policies π_1 and π_2

2. How do they differ? Difference in return: $\hat{G}(\pi_1) - \hat{G}(\pi_2)$

3. Which observations help most to distinguish them?

$$q^* \in \operatorname{argmax}_{q \in Q_c} I(\widehat{G}(\pi_1) - \widehat{G}(\pi_2); (q, \hat{y}) | \mathcal{D})$$

Information directed reward learning (IDRL)

• For a GP model we can compute the information gain exactly and efficiently

ETH zürich

• For some DNN models, we can approximate the IDRL objective efficiently

IDRL can learn a complex task in the MuJoCo simulator from numerical evaluations of clips of trajectories

IDRL can learn a complex task in the MuJoCo simulator from numerical evaluations of clips of trajectories

ETH zürich

IDRL can learn locomotion in MuJoCo from comparisons

ETH zürich

- Normalized score averaged over multiple MuJoCo environments as a function of policy training steps
- Reward model trained from synthetic comparison queries
- Samples provided following a pre-defined schedule that is the same for all methods (more samples initially, less later)

DNN reward

model

Many practical tasks naturally decompose into rewards and constraints

Constraint have can be more transferable and robust than rewards

Base Scenario

Encode task as reward + penalty

Encode task as reward + constraint

D.L., S.T., K.H., A.K. "Interactively learning preferece constraints", preliminary work.

We can actively learn constraints similarly to learning rewards

Information directed reward learning

- 1. Which policies are potentially optimal?
- 2. How can we reduce uncertainty about their *optimality*?

Adaptive constraint learning (ACOL)

- 1. Which policies are potentially optimal?
- 2. How can we reduce uncertainty about their *feasibility*?

Active learning also improves sample efficiency for learning constraints

- We consider a driving environment with known reward but unknown constraints
- We can obtain binary samples wheather a trajectory is feasible or not
- How many samples to we need until we can identify the best constrained policy?

Key takeaways

- For active reward learning, we should consider plausibly optimal policies
- Information directed reward learning (IDRL) provides a way to do so
- Rewards and constraints can be a **particularly robust** alternative to represent task specifications compared to reward functions only
- We can actively learn constraints with a similar method as IDRL

Come talk to me if...

- ... you want to hear more technical details about anything I talked about.
- ... you work on an application that would benefit from learning task specifications from humans.
- ... you just want to chat.

