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international human rights law 
(IHRL)
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ICRC Mission

• Sensitive information is collected as part of the ICRC missions:


• Which prisoner is kept in which prison


• Who is crossing a border and when, which route are they taking


• The ICRC would like to be able to compute on this data


• E.g., potentially use ML to reconnect lost relatives


• They lack the infrastructure and expertise for this, thus offloading to the 
cloud is attractive for them
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ICRC + Cloud 
Drawbacks

• The information that the ICRC stores in the cloud might give a tactical 
advantage in an armed conflict


• Data on the cloud might be subpoenaed by a judge


• Can be a target of intelligence agencies


• Lawful access to ICRC cloud data can prevent them from fulfilling their 
mission


• The ICRC can lose access to war prisons


• Beneficiaries might not trust the ICRC with their data
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ICRC Threat model

• Attacker with state level capabilities and lawful access to third party cloud 
infrastructure and the data stored in it


• ICRC facilities are physically protected and cannot be lawfully accessed


• ICRC agents cannot be coerced


• Manufacturer is trusted to produce CPUs/Hardware according to specification
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TEEs - SGX
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Operating System

Hypervisor

Hardware (CPU)

Application 2 Application 3

Untrusted App 1 
Memory

Untrusted App 1

Enclave

App 1

TCB

TCB

• CPU primitives isolate 
applications from a malicious 
OS/Hypervisor


• Drawbacks:


• Side-channels


• Need to trust a third party 



ICRC Threat model
Can we use a TEE?

• Concrete assumptions:


• TEE manufacturer is trusted for manufacturing


• TEE manufacturer is not trusted at runtime


• The attacker compromised the OS (or is colluding with the CSP)


• Can we use SGX (+/- DCAP) or SEV (or a combination of them), under this 
threat model?
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SGX Attestation
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SGX Attestation attacks
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Trivially broken case 1:


• The remote verifier cannot distinguish attestation quotes, so does not realize that 
a new attacker controlled EPID_Priv key is being used for attestation
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EPID group is a special group assigned to 
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success in that case.
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SGX Attestation
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SGX Attestation
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• Intel could make an enclave that spits out the current provisioning seal key or 
equivalently the private EPID key


• With that key the attacker can fake remote 
attestations


• The attack needs to be repeated every time 
there is a TCB update

SGX Attack 1
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• There is a difference between trusting a manufacturer for manufacturing and 
at runtime. The former need not imply the latter


• The root of trust of SGX/SEV is built on keys which are available at runtime to 
the CPU manufacturer


• This does not fit in the ICRC attacker model, as the manufacturers can be 
compelled to act maliciously at runtime 

• Can we provide TEEs guarantees without relying on a third party at runtime?

Recap on Trust Assumptions
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Computing Stack

16

Operating System

Hypervisor

Hardware (CPU)

Application 2 Application 3

• How can we reduce the TCB 
without (fully) trusting the CPU?


• i.e. Without not trust the CPU 
manufacturer at runtime

Application 1



… jmp cmp test xor mov  

ICRC Sovereign Cloud
Problem analysis
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Application / VM

Number: 1 Addr: 0xaa

Number: 2 Addr: 0xab

… …

IDT

Interrupt / Exception



ICRC Sovereign Cloud
Problem analysis
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… jmp cmp test xor mov  

Interrupt / Exception

Hypervisor

Number: 1 Addr: 0xaa

Number: 2 Addr: 0xab

… …

IDT



ICRC Sovereign Cloud

• We can redirect all hypervisor entry points to the memory region of a device 
we control instead


• This would only be temporary, when execution is done, we can restore the 
previous execution environment


• During the ICRC execution, VM migration and sharing a server with other 
customers will not be possible (although this might not be relevant on a 
separate cloud deployment)


• This solution is suited for a custom cloud deployment, i.e. in an ICRC facility 
but managed by a CSP
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ICRC Sovereign Cloud
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Computing Stack with our device
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Device Hypevisor/OS

Hardware (CPU)

• After the device gains control 
over the system it takes over the 
whole computation stack ICRC app



ICRC Sovereign Cloud
Device requirements

• Functionality-wise the device needs to:


• Expose a readable memory region to the CPU (to serve instructions)


• Be able to read the memory of the server in which it is installed


• This is needed to handle page-fault exceptions or other interrupts


• PCIe + DMA gives us these primitives
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An “embassy” in the Cloud
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DRAM

PCIe bus

Memory bus

When an interrupt/exception occurs the CPU 
will fetch instructions directly from the device 

over the PCIe bus

Expose memory region of the device

Give DMA access to the device 

over the whole system memory



Sovereign Cloud

• Why do we need a separate device for this?


• If the check was done by the CPU itself there would be no way of verifying 
that the IDT has been replaced (emulation vs real)


• Can do key management / attestation without relying on a third party


• Device is simple


• Data owner can own/manufacture the device
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ICRC Sovereign Cloud
Notes on bus encryption/authentication

• Data between CPU and the device needs to be at least authenticated


• A confidential channel can be built on top of this


• In PCIe v5 and v6, the CPU root complex (PCIe controller) has a key that can 
be configured and allows to secure the bus


• What about other devices in the PCIe bus?


• The device can be the central point of communication, any bus transaction 
not initiated by the device should then indicate that something shady is 
going on
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Summary

• Current TEEs manufacturers cannot be trusted at runtime

• Our device is able to build a TCB when needed to compute on 
sensitive data

• When not needed we can use the CSP to manage the ICRC cloud 
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