
Department of Computer Science,

Institute of Information Security

@AMLD EPFL 29/03/22

A Sovereign Cloud for the ICRC
Ivan Puddu

• Prevention and punishment of
acts of torture and other form of
ill-treatment under international
humanitarian law (IHL) and
international human rights law
(IHRL)

ICRC Mission

2

• Prevention and punishment of
acts of torture and other form of
ill-treatment under international
humanitarian law (IHL) and
international human rights law
(IHRL)

ICRC Mission

3

ICRC Mission

• Sensitive information is collected as part of the ICRC missions:

• Which prisoner is kept in which prison

• Who is crossing a border and when, which route are they taking

• The ICRC would like to be able to compute on this data

• E.g., potentially use ML to reconnect lost relatives

• They lack the infrastructure and expertise for this, thus offloading to the
cloud is attractive for them

4

ICRC + Cloud
Drawbacks

• The information that the ICRC stores in the cloud might give a tactical
advantage in an armed conflict

• Data on the cloud might be subpoenaed by a judge

• Can be a target of intelligence agencies

• Lawful access to ICRC cloud data can prevent them from fulfilling their
mission

• The ICRC can lose access to war prisons

• Beneficiaries might not trust the ICRC with their data
5

ICRC Threat model

• Attacker with state level capabilities and lawful access to third party cloud
infrastructure and the data stored in it

• ICRC facilities are physically protected and cannot be lawfully accessed

• ICRC agents cannot be coerced

• Manufacturer is trusted to produce CPUs/Hardware according to specification

7

TEEs - SGX

8

Operating System

Hypervisor

Hardware (CPU)

Application 2 Application 3

Untrusted App 1
Memory

Untrusted App 1

Enclave

App 1

TCB

TCB

• CPU primitives isolate
applications from a malicious
OS/Hypervisor

• Drawbacks:

• Side-channels

• Need to trust a third party

ICRC Threat model
Can we use a TEE?

• Concrete assumptions:

• TEE manufacturer is trusted for manufacturing

• TEE manufacturer is not trusted at runtime

• The attacker compromised the OS (or is colluding with the CSP)

• Can we use SGX (+/- DCAP) or SEV (or a combination of them), under this
threat model?

9

SGX Attestation

10

SGX Enclave

Intel
Attestation

Service (IAS)

Remote

Verifier

Fo
rw

ar
d

Q
uo

te

Local Attestation

1. [MREncl..]KRep

Remote Attestation

2. [MREncl..]EPID_Priv Quoting
Enclave

Is EPID_Priv authentic?

Non-Linkable Mode

Different key used to sign each request, only the
IAS can verify the authenticity

SGX Attestation attacks

11

Trivially broken case 1:

• The remote verifier cannot distinguish attestation quotes, so does not realize that
a new attacker controlled EPID_Priv key is being used for attestation

Emulated

SGX Enclave

Remote

Verifier

Local Attestation Remote Attestation

Fo
rw

ar
d

Q
uo

te

1. [MREncl..]KRep 2. [MREncl..]EPID_Priv Emulated

Quoting Encl

When verifying the quote it sees that the
EPID group is a special group assigned to

the attacker. Always returns verification
success in that case.

Intel
Attestation

Service (IAS)

SGX Attestation

12

SGX Enclave

Intel
Attestation

Service (IAS)

Remote

Verifier

Local Attestation Remote Attestation

Fo
rw

ar
d

Q
uo

te

1. [MREncl..]KRep 2. { [MREncl..]EPID_Priv }PubKeyIAS Quoting
Enclave

MREncl.. ,

Is EPID_Priv authentic?

Linkable Mode

Signed blob is always the same for the same
enclave, but the quote is encrypted with the TLS

public key of the IAS

SGX Attestation

13

SGX Enclave Quoting
Enclave

Intel IAS

Remote

Verifier

Local Attestation Remote Attestation

Fo
rw

ar
d

Q
uo

te

1. [MREncl..]KRep

EGETKEY -> KProvSeal

KEYNAME: Provisioning Seal (0x2)

Depends on:

Padding MrSigner MrEnclave ISVSVN

ISVProdID Attributes KeyName CPUSVN

KeyIDSeal Key (E-Fuses)OwnerEpochKey

Root Provisioning
Key (E-Fuses) AES-CMAC

Message

Key

Untrusted OS

{EPID_Priv}KProvSeal

2. [MREncl..]EPID_Priv

• Intel could make an enclave that spits out the current provisioning seal key or
equivalently the private EPID key

• With that key the attacker can fake remote 
attestations

• The attack needs to be repeated every time 
there is a TCB update

SGX Attack 1

14

EGETKEY -> KProvSeal

KEYNAME: Provisioning Seal (0x2)

Depends on:

Padding MrSigner MrEnclave ISVSVN

ISVProdID Attributes KeyName CPUSVN

KeyIDSeal Key (E-Fuses)OwnerEpochKey

Root Provisioning
Key (E-Fuses) AES-CMAC

Message

Key

• There is a difference between trusting a manufacturer for manufacturing and
at runtime. The former need not imply the latter

• The root of trust of SGX/SEV is built on keys which are available at runtime to
the CPU manufacturer

• This does not fit in the ICRC attacker model, as the manufacturers can be
compelled to act maliciously at runtime

• Can we provide TEEs guarantees without relying on a third party at runtime?

Recap on Trust Assumptions

15

Computing Stack

16

Operating System

Hypervisor

Hardware (CPU)

Application 2 Application 3

• How can we reduce the TCB
without (fully) trusting the CPU?

• i.e. Without not trust the CPU
manufacturer at runtime

Application 1

… jmp cmp test xor mov

ICRC Sovereign Cloud
Problem analysis

17

Application / VM

Number: 1 Addr: 0xaa

Number: 2 Addr: 0xab

… …

IDT

Interrupt / Exception

ICRC Sovereign Cloud
Problem analysis

18

… jmp cmp test xor mov

Interrupt / Exception

Hypervisor

Number: 1 Addr: 0xaa

Number: 2 Addr: 0xab

… …

IDT

ICRC Sovereign Cloud

• We can redirect all hypervisor entry points to the memory region of a device
we control instead

• This would only be temporary, when execution is done, we can restore the
previous execution environment

• During the ICRC execution, VM migration and sharing a server with other
customers will not be possible (although this might not be relevant on a
separate cloud deployment)

• This solution is suited for a custom cloud deployment, i.e. in an ICRC facility
but managed by a CSP

19

ICRC Sovereign Cloud

20

Interrupt / Exception

Number: 1 Addr: 0xaa

Number: 2 Addr: 0xab

… …

IDT

Application / VM

… jm
p cmp test xor m

ov
Send x86 instructions

Computing Stack with our device

21

Device Hypevisor/OS

Hardware (CPU)

• After the device gains control
over the system it takes over the
whole computation stack ICRC app

ICRC Sovereign Cloud
Device requirements

• Functionality-wise the device needs to:

• Expose a readable memory region to the CPU (to serve instructions)

• Be able to read the memory of the server in which it is installed

• This is needed to handle page-fault exceptions or other interrupts

• PCIe + DMA gives us these primitives

22

An “embassy” in the Cloud

23

DRAM

PCIe bus

Memory bus

When an interrupt/exception occurs the CPU
will fetch instructions directly from the device

over the PCIe bus

Expose memory region of the device

Give DMA access to the device

over the whole system memory

Sovereign Cloud

• Why do we need a separate device for this?

• If the check was done by the CPU itself there would be no way of verifying
that the IDT has been replaced (emulation vs real)

• Can do key management / attestation without relying on a third party

• Device is simple

• Data owner can own/manufacture the device

24

ICRC Sovereign Cloud
Notes on bus encryption/authentication

• Data between CPU and the device needs to be at least authenticated

• A confidential channel can be built on top of this

• In PCIe v5 and v6, the CPU root complex (PCIe controller) has a key that can
be configured and allows to secure the bus

• What about other devices in the PCIe bus?

• The device can be the central point of communication, any bus transaction
not initiated by the device should then indicate that something shady is
going on

25

Summary

• Current TEEs manufacturers cannot be trusted at runtime

• Our device is able to build a TCB when needed to compute on
sensitive data

• When not needed we can use the CSP to manage the ICRC cloud

26

