

Flow-based 3D Avatar Generation from Sparse Observations

Sadegh Aliakbarian saliakbarian@microsoft.com

In collaboration with: Pashmina Cameron, Federica Bogo, Andrew Fitzgibbon, and Tom Cashman

Goal

Given the signal from head-mounted devices (HMDs), the goal is to generate realistic and faithful full-body avatar poses to represent people in mixed reality scenarios.

Overview

A user is wearing a head-mounted device (HMD), e.g., HoloLens2 HMD provides the location and orientation of head and hands Our approach predicts full-body avatar pose given HMD signal

HMD signal and 3D pose represent same person

Can we learn a common representation?

During training

During generation

We call our approach FLAG

Flow-based 3D Avatar Generation

AMASS Dataset

SMPL

HMD Signal

Head rotation and translation Hands rotation and translation

AMASS (mpg.de)

SMPL (mpg.de)

Mapping between 3D pose and the Latent Space

Via a conditional Flow-based model

f_{θ} : A Conditional Flow-based Model

f_{θ} : A Conditional Flow-based Model

f_{θ} : A Conditional Flow-based Model

Mapping from HMD to the Latent Space

Via transformers with a discrete latent space

f_{LRA} : Head & Hands \rightarrow the Latent Space

Head & Hands in SE3

f_{LRA} : Head & Hands \rightarrow the Latent Space

Training and Generation

To train f_{θ}

$$\log p(x) = \log p(z_0) - \sum_{i=1}^{K} \log \det \left| \frac{\partial T_i}{\partial z_i} \right|$$

$\mathcal{L}_{\rm nll} = - \log p_{\theta}(x_{\theta})$

To train f_{LRA}

Auxiliary tasks
$$\mathcal{L}_{\text{mjp}} = \sum_{j \in J_{\text{masked}}} \left\| \hat{x}_P^j - x_P^j \right\|_2^2 \qquad \qquad \mathcal{L}_{\text{rec}} = \left\| \hat{x}_{\theta}^{\text{tps}} - x_{\theta} \right\|_2^2$$

Latent region approximation

$$\mathcal{L}_{\text{lra}} = -\alpha_{\text{nll}} \log p_{\mathbb{H}}(z^*) + \alpha_{\text{rec}} \|\mu_{\mathbb{H}} - z^*\|_2^2$$
$$-\alpha_{\text{reg}}(1 + \ln \sigma_{\mathbb{H}} - \sigma_{\mathbb{H}})$$

Generation

Optimization in pose space Head & Hands θ_{init}

 θ_{opt}

Optimization in latent space

$$\begin{array}{c} z_{opt} \\ f_{\theta} \\ \hat{\theta} \end{array}$$

Experiments and Results

Qualitative Results

Qualitative Results

Quantitative Results

MPJPE: mean per-joint position error

Method	Upper Body MPJPE (\downarrow)	Full Body MPJPE (\downarrow)
VPoser-HMD	1.69 cm	6.74 cm
HuMoR-HMD	1.52 cm	5.50 cm
VAE-HMD	3.75 cm	7.45 cm
ProHMR-HMD	1.64 cm	5.22 cm
FLAG (Ours)	1.29 cm	4.96 cm
Latent Variable Samplin	ng Upper Body MPJPE (\downarrow)	Full Body MPJPE (\downarrow)
Zeros ($z = 0$)	1.39 cm	5.11 cm

Zeros ($z = 0$) MLP ($z = MLP_{rr}$)	1.39 cm	5.11 cm
Ours $(z = \mu_{\mathbb{H}})$	1.30 cm	4.96 cm

Optimization

FLAG on HoloLens 2

Conclusion

- People are at the heart of mixed reality applications, and so generating realistic human representations with high fidelity is key to the user experience.
- FLAG presents a solution to the extremely challenging problem of generating realistic and high-fidelity full-body poses from sparse HMD observations

© Copyright Microsoft Corporation. All rights reserved.

https://microsoft.github.io/flag