

Robust Volumetric Mapping in Changing Environments

AMLD / Microsoft SJRC

Lukas Schmid, Cesar Cadena, Roland Siegwart, Johannes Schönberger, Jeff Delmerico, Juan Nieto, Marc Pollefeys

March 28th, 2022

Lukas Schmid | 28.3.2022 | 1

Robust Volumetric Mapping in Changing Environments

Goal:

Enable robots to act intelligently in environments that are shared with other agents over longer periods of time.

Robust Volumetric Mapping in Changing Environments

Challenges

Pose Errors

Accumulated noisy point clouds

ETH zürich

Long-term Scene Changes

Monolithic Map

Robust Volumetric Mapping in Changing Environments

How can the map representation help?

Pose Errors

TSDF reconstruction

[S. Lionar*, **L. Schmid***, C. Cadena, R. Siegwart, A. Cramariuc, "NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping." 3DV 2021]

ETH zürich

Long-term Scene Changes

Monolithic Map

[L. Schmid, J. Delmerico, J. Schönberger, J. Nieto, M. Pollefeys, R. Siegwart, C. Cadena, "Panoptic Multi-TSDFs: a Flexible Representation for Online Multi-resolution Volumetric Mapping and Long-term Dynamic Scene Consistency." ICRA 2022]

Lukas Schmid | 28.3.2022 | 4

- Recent progress in neural shape representation.
- Can we incrementally build a neural implicit map?

onomous Systems Lab

Can we leverage geometric context for more robust fusion?

Pipeline Overview

• Decouple problem, train shape representation independently on ShapeNet.

[S. Peng et al. "Convolutional Occupancy Networks." ECCV 2020]

• Decouple problem, train shape representation independently on ShapeNet.

[S. Peng et al. "Convolutional Occupancy Networks." ECCV 2020]

• Train incremental fusion of pre-trained neural implicit representations.

- Test on real scenes of Redwood dataset.
- Sensor pose uncertainty.

 $\sigma_{s} = 0.025$

 $\sigma_{s} = 0.05$

 $\sigma_{s} = 0.075$

Lukas Schmid | 28.3.2022 | 11

TSDF (0.02 m voxel)

Ours (0.5 m voxel)

25+

0

	<i>Left:</i> $TSDF$ (0.02 m ³) [3]. <i>Right:</i> Ours (0.5 m ³).									
σ_s (m)	Accuracy		Completeness		Recall		Recall*			
0	0.0175	0.0225	0.0137	0.0135	0.988	0.990	0.984	0.986		
0.025	0.0213	0.0253	0.0202	0.0155	0.926	0.990	0.888	0.986		
0.050	0.0377	0.0350	0.0352	0.0202	0.756	0.952	0.625	0.928		
0.075	0.0535	0.0526	0.0486	0.0241	0.635	0.886	0.438	0.827		

*the ground is excluded

- Robotic volumetric mapping based on implicit neural representations.
- Incremental fusion of sensor data directly in latent space.
- Can robustly capture surfaces in the presence of pose errors, sensing uncertainty, and sparse sensor inputs.
- Runs at interactive rates on a CPU only!

Encoding	Decoding			
4.7 FPS	15.6 voxe	2.1 FPS^3		

- World typically does not change at random, but in a semantically consistent way.
- Can we leverage high-level semantic information to build temporally consistent maps online?

- Hierarchical map representation based on semantically and temporally consistent submaps.
- Only integrate submaps that are successfully tracked over time.
- Reason about change or persistence on the set of submaps.

Microsoft

Microsoft

• Spatio-temporal map queries.

Observed Free
Observed Occupied
Expected Free
Expected Occupied
Occupied due to semantic consistency
Unknown

ETH zürich

Setting	Resolution	Tracking	Integration	Management	FPS*
Flat, ground truth	2-5 cm 4-10 cm	$\begin{array}{c} 70.2 \pm 8.4 \\ 63.9 \pm 4.4 \end{array}$	$\begin{array}{c} 104.3 \pm 14.4 \\ 89.2 \pm 7.8 \end{array}$	$\begin{array}{r} 199.1 \pm 54.1 \\ 182.1 \pm 44.3 \end{array}$	5.1 5.8
Flat, detectron	2-5 cm 4-10 cm	$\begin{array}{r} 57.8 \pm 5.5 \\ 54.7 \pm 5.1 \end{array}$	$\begin{array}{c} 91.1 \pm 11.1 \\ 80.3 \pm 7.4 \end{array}$	$\begin{array}{c} 192.1 \pm 54.3 \\ 183.5 \pm 49.2 \end{array}$	5.9 6.5
RIO, detectron	2-5 cm 4-10 cm	21.8 ± 4.6 16.8 ± 3.4	$\begin{array}{c} 21.8 \pm 5.9 \\ 13.3 \pm 3.5 \end{array}$	$33.2 \pm 23.8 \\ 9.5 \pm 4.5$	21.3 32.2

* Final frame rate is computed performing change detection every 10 frames.

- Hierarchical map representation based on semantically and temporally consistent submaps.
- Reason about change or persistence on the set of submaps that together constitute a full volumetric map.
- Can be incrementally built, maintained, and queried on compute constrained robots.

Conclusions

- Learning-based methods show high potential for surface representation and scene understanding.
- Common map representations not yet there to effectively capture and reason about complex, changing, shared environments.
- Combine low-level geometry and high-level abstractions to reason at the adequate scale.

Outlook

- Spatio-temporal volumetric mapping.
- Active Perception to improve scene understanding and map building.

[L. Schmid, C. Ni, Y. Zhong, R. Siegwart, and O. Andersson, "Fast and Compute-efficient [R. Zurbrugg, H. Blum, C. Cadena, R. Siegwart, and L. Schmid, "Embodied Active Domain Sampling-based Local Exploration Planning via Distribution Learning." ArXiv 2022] Adaptation for Semantic Segmentation via Informative Path Planning." ArXiv 2022]

NeuralBlox

https://github.com/ethz-asl/neuralblox

Panoptic Mapping

https://github.com/ethz-asl/panoptic_mapping