Sponsored by
ETHziirich = Microsoft

AMLD / Microsoft SURC

Lukas Schmid, Cesar Cadena, Roland Siegwart,

Johannes Schoénberger, Jeff Delmerico, Juan Nieto,
Marc Pollefeys

March 28th, 2022

Lukas Schmid | 28.3.2022 | 1



Robust Volumetric Mapping in Changing Environments

Goal:
Enable robots to act intelligently in environments that are
shared with other agents over longer periods of time.
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Robust Volumetric Mapping in Changing Environments

Challenges
Pose Errors Long-term Scene Changes

Accumulated n0|sy pomt clouds |

Monolithic Map
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Robust Volumetric Mapping in Changing Environments

How can the map representation help?
Pose Errors Long-term Scene Changes

"

[S. Lionar*, L. Schmid*, C. Cadena, R. Siegwéri A. Cramariuc, "NeuralBlox: Real-Time [L. Schmid, J._Delmerico, J. Slchénberger, J. N_ieto, M. qulefeys,_R. Siegyvart, C. Cadena,
Neural Re{)resentation Fusion for Robust Volumetric Mapping " 3DV 2021] "Panoptic Multi-TSDFs: a Flexible Representation for Online Multi-resolution Volumetric

o P Sionsored by Mapping and Long-term Dynamic Scene Consistency." ICRA 2022]
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NeuralBlox: Real-Time Neural Representation Fusion

e Recent progress in neural shape representation.
e Can we incrementally build a neural implicit map?

e C(Can we leverage geometric context for more robust fusion?
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NeuralBlox: Real-Time Neural Representation Fusion

Pipeline Overview

Input
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NeuralBlox: Real-Time Neural Representation Fusion

Decouple problem, train shape representation independently on

o
ShapeNet.
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NeuralBlox: Real-Time Neural Representation Fusion

e Decouple problem, train shape representation independently on
ShapeNet.
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NeuralBlox: Real-Time Neural Representation Fusion

e Train incremental fusion of pre-trained neural implicit representations.
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NeuralBlox: Real-Time Neural Representation Fusion

e Test on real scenes of Redwood dataset.

e Sensor pose uncertainty.

o, = 0.025 o, = 0.075

Sponsored by

[ | Autonomous Systems Lab .= Microsoft Lukas Schmid | 28.3.2022 | 10

N
c:
3.
o
>
H D
| 5
.V



NeuralBlox: Real-Time Neural Representation Fusion

TSDF (0.02 m*voxel)
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NeuralBlox: Real-Time Neural Representation Fusion

25+

[wo] 40413 uononsSuUOOaY

0
TSDF (0.02 m voxel) Ours (0.5 mvoxel)
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NeuralBlox: Real-Time Neural Representation Fusion

Left: TSDF (0.02 m?®) [3]. Right: Ours (0.5 m?).

os (m) Accuracy Completeness Recall Recall*

0 0.0175 | 0.0225 0.0137 | 0.0135 [[0.988 | 0.990 || 0.984 | 0.986 )
0.025 0.0213 | 0.0253 0.0202 | 0.0155 || 0.926 | 0.990 || 0.888 | 0.986
0.050 0.0377 | 0.0350 0.0352 | 0.0202 || 0.756 | 0.952 || 0.625 | 0.928
0.075 |, 0.0535 | 0.0526 || 0.0486 | 0.0241 |} 0.635 | 0.886 || 0.438 | 0.827 )

*the ground is excluded
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NeuralBlox: Real-Time Neural Representation Fusion

e Robotic volumetric mapping based on implicit neural representations.
e Incremental fusion of sensor data directly in latent space.

e Can robustly capture surfaces in the presence of pose errors, sensing
uncertainty, and sparse sensor inputs.

e Runs at interactive rates on a CPU only!

Encoding Decoding
4.7FPS | 15.6voxls | 2.1 FPS®
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Panoptic Multi-TSDFs: Online multi-resolution volumetric mapping with
long-term dynamic scene consistency

e World typically does not change at random, but in a
semantically consistent way.

e Can we leverage high-level semantic information to build
temporally consistent maps online?

Day 1 Day 2 Single TSDF map
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Panoptic Multi-TSDFs: Online multi-resolution volumetric mapping with
long-term dynamic scene consistency

e Hierarchical map representation based on semantically and temporally
consistent submaps.

e Only integrate submaps that are successfully tracked over time.

e Reason about change or persistence on the set of submaps.

[Submap Collection]—)[ Submaps ]—)[ Blocks ]—)[ TSDF Voxels ]

Y Y
Spatial Index Bounding Volume
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Panoptic Multi-TSDFs: Online multi-resolution volumetric mapping with
long-term dynamic scene consistency

To this end, we propose Panoptic Multi-TSDFs as a flexible map
representation for online volumetric mapping in changing scenes.
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Panoptic Multi-TSDFs: Online multi-resolution volumetric mapping with
long-term dynamic scene consistency

Color Panoptic Prediction __Tracked

- L

For instance consistency, panoptic segmentations are
tracked against the currently active submaps.
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Panoptic Multi-TSDFs: Online multi-resolution volumetric mapping with
long-term dynamic scene consistency

This allows our approach to reason about map persistence
during online operation, directly on the object-level.
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Panoptic Multi-TSDFs: Online multi-resolution volumetric mapping with
long-term dynamic scene consistency

e Spatio-temporal map queries.
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Panoptic Multi-TSDFs: Online multi-resolution volumetric mapping with
long-term dynamic scene consistency
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Panoptic Multi-TSDFs: Online multi-resolution volumetric mapping with
long-term dynamic scene consistency
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Panoptic Multi-TSDFs: Online multi-resolution volumetric mapping with
long-term dynamic scene consistency

Setting Resolution Tracking Integration Management |FPS*
Flat, 2-5cm 702 £ 84 1043 £ 144  199.1 + 54.1 5.1
ground truth 4-10cm 639 £+ 44 89.2 + 7.8 182.1 4= 44.3 5.8
Flat, 2-5cm 578 £55 911 £ 11.1 192.1 £ 54.3 5.9
detectron 4-10 cm 547 £ 5.1 803 £ 74 183.5 4= 49.2 6.5
RIO, 2-5cm  21.8 £ 4.6 21.8 = 5.9 33.2 +£ 23.8 21.3

detectron 4-10cm  16.8 £ 3.4 13.3 £ 3.5 9.5 £ 45 132.2

* Final frame rate is computed performing change detection every 10 frames.
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Panoptic Multi-TSDFs: Online multi-resolution volumetric mapping with
long-term dynamic scene consistency

e Hierarchical map representation based on semantically and temporally
consistent submaps.

e Reason about change or persistence on the set of submaps that together
constitute a full volumetric map.

e Can be incrementally built, maintained, and queried on compute
constrained robots.
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Conclusions
e Learning-based methods show high potential for surface representation and
scene understanding.

e Common map representations not yet there to effectively capture and
reason about complex, changing, shared environments.

e Combine low-level geometry and high-level abstractions to reason at the
adequate scale.
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Outlook

e Spatio-temporal volumetric mapping.

e Active Perception to improve scene understanding and map building.
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[L. Schmid, C. Ni, Y. Zhong, R. Siegwart, and O. Andersson, "Fast and Compute-efficient [R. Zurbrugg, H. Blum, C. Cadena, R. Siegwart, and L. Schmid, "Embodied Active Domain

Sampling-based Local Exploration Planning via Distribution Learning." ArXiv 2022] Adaptation for Semantic Segmentation via Informative Path Planning." ArXiv 2022]
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NeuralBlox Panoptic Mapping

Questions?

o

|
https://github.com/ethz-asl/neuralblox https://github.com/ethz-asl/panoptic_mapping
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