

Applied AI for Advancing Space

ESA Advanced Concepts Team

Marcus Märtens, Dario Izzo

WE ARE ESA

WHAT

WHY

EUROPE'S GATEWAY TO SPACE

22 Member States, 5000 employees

Exploration and use of space for exclusively peaceful purposes

WHERE

HQ in Paris, 7 sites across Europe and a spaceport in French Guiana

HOW MUCH

€5.72 billion = €12 per European per year

ESA UNCLASSIFIED - For Official Use

*

The Advanced Concepts Team (ACT) @ ESA

The set = + 11 = ⋮ = 11 11 = = ≤ ₩ = ∅ 11 = 13 ₩ i+i

AI applications are pervasive in the space domain

Guidance and Control

Landing, docking, interplanetary transfers, hovering, etc.

Navigation

Pose estimation, docking, etc.

Payload data processing

Earth observation, space environment, science data, etc.

Ground operations

Health monitoring, Collision Avoidance Systems, etc..

_ II ⊾ :: ■ + II ■ ½ _ II II _ _ Z :: X → Ø II _ II . X IV

AI applications are pervasive in the space domain

Robotics

Rovers, underwater robotics, path planning and scheduling, automated reasoning, etc.

Spacecraft Design

Preliminary phases, multidisciplinary design optimization, concurrent design, etc.

Knowledge management

Ontologies, semantics, document classification, document rating, search, etc.

Presentation Overview

PROBA-V Super Resolution

Enhance the vegetation payload performances

Pose Estimation Challenge

One camera, one image, one pose.

👤 Take Part

Bonus Round

1 Take Part

- Collision Avoidance
- Guidance and Control
- Interstellar Space Travel

· = ■ ► = = + ■ + ■ = ≔ = 1 ■ ■ = = = ■ ■ ■ ■ ■ = = ₩

Proba-V Satellite Image Super Resolution

PROBA-V

Launched 6th May 2013 Space-borne monitoring of

vegetation

Products:

- 300m resolution
- Near global (90%) coverage daily
 - 100m resolution
 - Global coverage ~5 days

_ II ⊾ :: ■ + II ■ ½ _ II II _ _ Z ... !! ... II _ II _ II ...

Geolocation mean accuracy: ~61m (±50m)

FOV / Swath: 102,6° / 2250 km Spectral bands: NIR, RED, BLUE and SWIR Pixel quality maps for clouds, shadows, ice, etc.

What is Super-resolution?

Single Image SR: Image Processing technique for high fidelity upscaling of single images **Multi Image SR:** Fusion of multiple images/frames for the purpose to create a single upscaled image

Example taken from: Sunkavalli, Kalyan, et al. "Video snapshots: Creating high-quality images from video clips." IEEE transactions on visualization and computer graphics 18.11 (2012): 1868-1879.

= II 🕨 ## ## #I 💻 🚝 == II II = = = ## 🛶 🔯 II == ## ## ##

PROBA-V Super Resolution

Data from PROBA-V mission:

- 1450 scenes, 74 ROIs
 - ~19 low resolution (LR) per scene
 - one high resolution (HR) target to learn
 - precomputed cloudmaps

Deep convolutional neural networks:

- Exploiting subpixel shifts of LR images
- Goal: Upscaling by a factor of 3
- Data-fusion

Network inspired by: Dong, C., Loy, C. C., He, K. M., Tang, X. O. "*Image super-resolution using deep convolutional networks*", IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295–307.

Published: Märtens, M., Izzo, D., Krzic, A., and Cox, D. "Super-resolution of PROBA-V images using convolutional neural networks", Astrodynamics, 2019. <u>https://doi.org/10.1007/s42064-019-0059-8</u>

Results of SRCNN

- Baseline: **bicubic interpolation** •
- Quality metric: **cPSNR**
- PSNR modified for
 - image registration 0
 - bias in pixel intensity 0
 - clouds 0

60

251 out of 290 images

reconstructed by SRCNN

have a higher cPSNR than

thie bicubic interpolation.

Next Step: Kelvins competition

https://kelvins.esa.int

Kelvins Portal: compete to excel

- Fundamental to innovation IS asking the correct questions.
- A dedicated competition portal for space AI: Kelvins, reach the absolute zero (error).
- Targeting AI at large, machine learning and data mining communities in particular.
- Portal: <u>https://kelvins.esa.int/</u>
- Competitions run so far: Star-trackers, Mars-Express Power consumption, Satellite Pose Estimation over PRISMA, Space Debris Removal tugs (GTOC9), Proba-V super resolution, Star Tracker Identification.

_ II ⊾ :: ■ + II ■ ½ _ II II _ Z = :: II ▲ Ø II _ II ₩ IV

Kelvins Portal: Super Resolution competition

esa

Details on the competition:

- 6 month duration
- 70 registered teams
- 17 teams improved baseline solution
- 412 submissions (on average 2.25 submission per day)

Winner: Team SuperPip

Image Processing and Learning Group Politecnico di Torino, Italy

Results of Kelvins competition

Ground Truth High Resolution

Baseline (bicubic interpolation)

Super Resolution (SuperPip)

References, Links and further outcome

Selected Scientific Publications

Main publication: Märtens, M., Izzo, D., Krzic A., Cox, D.: *"Super-resolution of PROBA-V images using convolutional neural networks"*, in Astrodynamics, 2019.

https://doi.org/10.1007/s42064-019-0059-8

Competition winner: Molini, A.B., Valsesia, D., Fracastoro, G. and Magli, E.: "*DeepSUM: Deep neural network for Super-resolution of Unregistered Multitemporal images.*" in IEEE Transactions on Geoscience and Remote Sensing, 2019.

https://doi.org/10.1109/TGRS.2019.2959248

Open Source Software

Luís F. Simões: Embiggen module, a toolkit to work with Proba-V competition data (<u>https://github.com/lfsimoes/probav</u>) Team Rarefin: HighRes-net: Multi Frame Super-Resolution by Recursive Fusion (<u>https://github.com/ElementAI/HighRes-net</u>) Team SuperPip: DeepSUM: Deep neural network for Super-resolution of Unregistered Multitemporal images (<u>https://github.com/diegovalsesia/deepsum</u>)

Links

Kelvins competition portal: <u>https://kelvins.esa.int</u>

Proba-V distribution portal (by VITO): https://remotesensing.vito.be/case/proba-v-0

= II 🛌 == + II = 😑 = II II = = = 🔠 🖬 🖬 🖬 = II 💥 IV

Spacecraft/Satellite Pose Estimation

Predicting relative position + orientation from images

eesa

- Rendezvous with uncooperative spacecraft
- Enabling:
 - debris removal
 - on-orbit servicing

The Dataset

esa

Stanford

University

rendezvol

bace

Data from the PRISMA mission (Swedish Aerospace Corporation)

- 15 000 computer generated images of a spacecraft (~4.6GB)
- 300 images of satellite mock-up generated at Stanford Labs
- Challenge: purely vision-based inference of pose
 - relative position and attitude

Computer generated images (pose overlayed)

Camera captured image

Kelvins Portal: Pose estimation competition

Details on the competition:

- 5 month duration
- ~70 registered teams
- 36 teams improved baseline solution

Results

Rank	Name	Real Image Score	Best Score
1	UniAdelaide	0.3752442418711471	0.009449622064660844
2	EPFL_cvlab	0.11397767001637173	0.02153775817984222
3	pedro_fairspace	0.1554876108763784	0.057050185272129426
4	stanford_slab	0.3950914435276558	0.06262229611857424
5	Team_Platypus	1.7201238117705309	0.07028457489821285
6	motokimura1	0.6011030833737907	0.07582034748337328
7	Magpies	1.265914546465023	0.1393022728680455
8	GabrielA	2.6209116199390117	0.24234980739500175
9	stainsby	5.000442762375624	0.3710962867057655
10	VSI_Feeney	1.5993459458340495	0.46582876551354907

- Winning team: **University of Adelaide** (average pose error < 1°)
- Best on real images: **EPFL CVLab** (error ~ 6.5°)
- Top submissions combined keypoint matching with deep learning

Final results in comparison

Accuracy - Example 1

· = ■ ► = = + ■ + ■ = ≔ = ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

Where is Waldo Tango?

Accuracy - Example 2

Which samples are difficult?

- "Super Pose Estimator" best prediction for each sample
- Performance ~ difficulty
- Ranking test samples

Influence of the background

= II 🛌 :: 🖛 🕂 II 💻 🚝 = II II = = = # 🛶 🚳 II = :: II 💥 🙌

References, Links and further outcome

Selected Scientific Publications

Main paper: Kisantal M., Sharma S., Park T. H., Izzo D., Märtens M., D'Amico S. "Satellite Pose Estimation Challenge: Dataset, Competition Design and Results" (currently under submission)

https://arxiv.org/abs/1911.02050

Dataset generation: Sharma S., D'Amico S. "Pose Estimation for Non-Cooperative Rendezvous Using Neural Networks" In AAS/AIAA Astrodynamics Specialist Conference, Ka'anapali, Maui, HI, January 13-17 (2019).

https://arxiv.org/pdf/1906.09868

Competition winner: Chen, B., Cao, J., Parra, A. and Chin, T.J. "Satellite Pose Estimation with Deep Landmark Regression and Nonlinear Pose Refinement" In Proceedings of the IEEE International Conference on Computer Vision Workshops. (2019)

https://arxiv.org/abs/1908.11542

Open Source Software

Pedro F. Proença: network and model weights (https://github.com/pedropro/UrsoNet)

Links

Kelvins competition portal: <u>https://kelvins.esa.int</u>

Stanford Space Rendezvous Lab: <u>https://damicos.people.stanford.edu/</u>

= II 🛌 == + II = 😑 = II II = = = 🔠 🖬 🖬 = II = II 💥 IV

Bonus Round 1: Collision avoidance

Latest competition On Kelvins

"Estimating collision risk"

Breaking all records: ~100 participants ~1000 submissions

Evaluation: ongoing!

For the first time ever, ESA has performed a 'collision avoidance manoeuvre' to protect one of its satellites from colliding with a 'mega constellation'#SpaceTraffic

🗘 1,605 3:36 PM - Sep 2, 2019

SPACE DEBRIS

MONITORING OUR SKIES

Bonus round 2: Autonomous Guidance and Control

(Deep) neural networks for guidance and control: G&CNETs

- Robust controllers that can fly autonomously
- Fast on-board evaluations
- Train controller by imitation learning from optimal trajectories
- Hardware test-bed: Quadcopters

Bonus round 3: Interstellar space travel

How we settled the galaxy: <u>https://coolrunning.github.io/gtocx_pres/#/</u>

= II 🛌 == + II = 🚝 = II II = = = 🔚 🛶 🔯 II = = II 👯 IV

Thank you for your attention!

Please visit us online <u>https://esa.int/act</u>

Marcus Märtens (marcus.maertens@esa.int)

####