

Detecting Convective Clouds in Geostationary Satellite data with Convolutional Neural Networks

Dr. William Clemens dida Datenschmiede GmbH

27, January 2020

- $\cdot \ {\rm Problem}$
- $\cdot \,$ Methodology
- $\cdot \ {\rm Results}$
- $\cdot\,$ Conclusions and potential future work

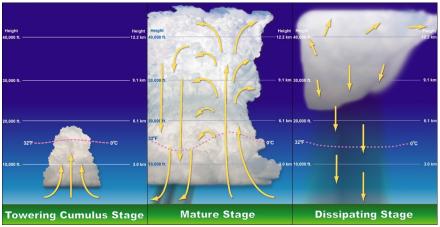
9

Problem

dida Datenschmiede GmbH, 2020

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

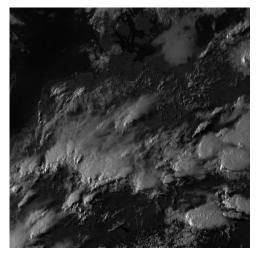
What are Convective Clouds?



Source: Wikipedia / NOAA

Meteosat Second Generation

• Geostationary satellites that take very high temporal resolution (5min or 15min) but low spatial resolution images (\sim 1km or \sim 3km).



9

Methodology

dida Datenschmiede GmbH, 2020

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 りへぐ

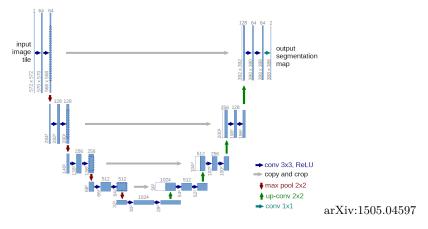
 $\cdot\,$ We want to predict a class for each pixel in our image.

Methodology

- $\cdot\,$ We want to predict a class for each pixel in our image.
- \cdot In order to do this we use a convolutional neural network architecture called a U-Net:

Methodology

- $\cdot\,$ We want to predict a class for each pixel in our image.
- \cdot In order to do this we use a convolutional neural network architecture called a U-Net:



9

Labelling

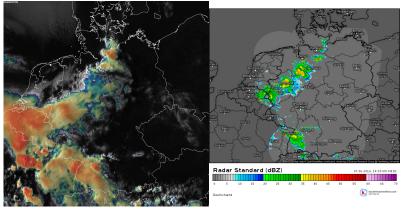
 $\cdot\,$ There is no real ground truth unfortunately.

Labelling

- $\cdot\,$ There is no real ground truth unfortunately.
- \cdot We needed to get labelled images. This unfortunately needed to be done by hand.

Labelling

- $\cdot\,$ There is no real ground truth unfortunately.
- \cdot We needed to get labelled images. This unfortunately needed to be done by hand.
- \cdot We present the labellers with a false colour image that combines the HRV and one IR channel as well as a radar image and ground observations.



Data Augmentation

 $\cdot\,$ Labelling data is slow.

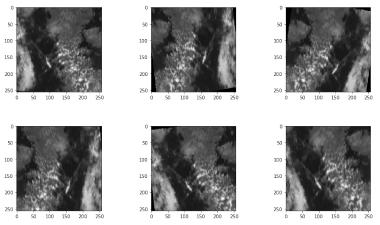
Data Augmentation

 $\cdot\,$ Labelling data is slow. We obtained ${\sim}1750$ images.

- $\cdot\,$ Labelling data is slow. We obtained ${\sim}1750$ images.
- $\cdot\,$ We need to make the most of what we have.

Data Augmentation

- \cdot Labelling data is slow. We obtained ${\sim}1750$ images.
- $\cdot\,$ We need to make the most of what we have.
- $\cdot\,$ Make random transformations to the data and labels and feed them to the network.



dida Datenschmiede GmbH, 2020

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

 $\cdot\,$ We us the smooth dice loss for our loss function.

•

 $\cdot\,$ We us the smooth dice loss for our loss function.

$$1 - \frac{2\sum y_t y_p + 1}{\sum y_t + \sum y_p + 1} \tag{1}$$

 $\cdot\,$ Where y_t are the true labels and y_p are the predicted labels.

•

 $\cdot\,$ We us the smooth dice loss for our loss function.

$$1 - \frac{2\sum y_t y_p + 1}{\sum y_t + \sum y_p + 1} \tag{1}$$

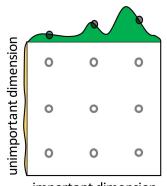
- $\cdot\,$ Where y_t are the true labels and y_p are the predicted labels.
- \cdot This leads to better convergence in this case than the more common binary cross entropy.

We have a lot of hyperparameters when defining our model:

We have a lot of hyperparameters when defining our model:

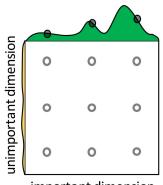
Hyperparameters	Possible values
Data Augmentation	flips, maximum angles, maximum zoom
Number of "recursions" for the UNET	1, 2, 3, 4, 5
Nonlinearity	ReLU, ELU, CELU
Method of upsampling	Transposed convolution, pixel shuffle
Optimisation algorithm	RMSProp, Adam
Dropout percentage	0, 0.2, 0.5
Batch size	4, 8,
Learning rate	$0.001, 0.005 \dots$
Learning rate annealing	none, one cycle, cosine

Hyperparameter optimisation



important dimension Source: Yao, Quanming et al. (2018). $\cdot\,$ The solution is to do a hyperparameter search.

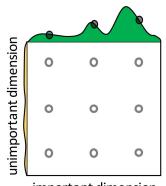
Hyperparameter optimisation



important dimension Source: Yao, Quanming et al. (2018).

- $\cdot\,$ The solution is to do a hyperparameter search.
- $\cdot\,$ It's better to do a random search than a grid search.

Hyperparameter optimisation



important dimension Source: Yao, Quanming et al. (2018).

- $\cdot\,$ The solution is to do a hyperparameter search.
- \cdot It's better to do a random search than a grid search.
- $\cdot\,$ We NEED to have a separate validation dataset here.

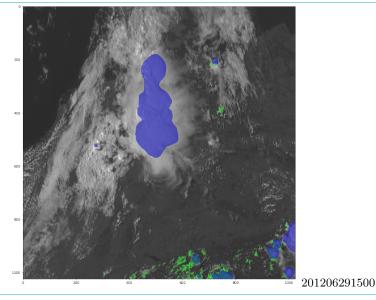
9

Results

dida Datenschmiede GmbH, 2020

 13

Results

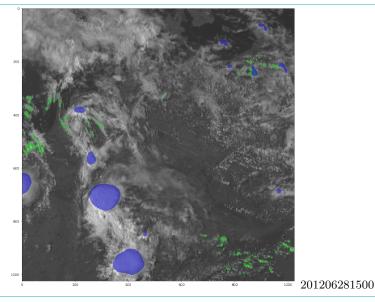


dida Datenschmiede GmbH, 2020

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

14

Results



dida Datenschmiede GmbH, 2020

◆□▶ ◆□▶ ▲目▶ ▲目▶ ▲□▶ ◆○○

15

 \cdot Measuring performance is difficult.

- $\cdot\,$ Measuring performance is difficult.
- $\cdot\,$ We perform very well against a test set drawn from the labels (98% accuracy)

- $\cdot\,$ Measuring performance is difficult.
- $\cdot\,$ We perform very well against a test set drawn from the labels (98% accuracy)
- $\cdot\,$ However assessing the performance of the labels themselves is not trivial. (No real ground truth.)

9

Extensions and Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ● ●

 \cdot Improve training data. Ideally use some automatically acquired data that removes human error.

- \cdot Improve training data. Ideally use some automatically acquired data that removes human error.
- \cdot Incorporate physics / meteorology knowledge.

- \cdot Improve training data. Ideally use some automatically acquired data that removes human error.
- \cdot Incorporate physics / meteorology knowledge. (Either through pre or post processing for the network)

- \cdot Improve training data. Ideally use some automatically acquired data that removes human error.
- \cdot Incorporate physics / meteorology knowledge. (Either through pre or post processing for the network)
- $\cdot\,$ Take advantage of the time series nature of the data.

- \cdot Improve training data. Ideally use some automatically acquired data that removes human error.
- \cdot Incorporate physics / meteorology knowledge. (Either through pre or post processing for the network)
- $\cdot\,$ Take advantage of the time series nature of the data.
- $\cdot\,$ Investigate different model architectures e.g. DeepLabV3.

- \cdot Improve training data. Ideally use some automatically acquired data that removes human error.
- \cdot Incorporate physics / meteorology knowledge. (Either through pre or post processing for the network)
- $\cdot\,$ Take advantage of the time series nature of the data.
- $\cdot\,$ Investigate different model architectures e.g. DeepLabV3.
- \cdot Investigate using non solar channels for night time predictions.

- \cdot Improve training data. Ideally use some automatically acquired data that removes human error.
- \cdot Incorporate physics / meteorology knowledge. (Either through pre or post processing for the network)
- $\cdot\,$ Take advantage of the time series nature of the data.
- $\cdot\,$ Investigate different model architectures e.g. DeepLabV3.
- \cdot Investigate using non solar channels for night time predictions.

 $\cdot\,$ Convolutional neural networks are well suited to processing this kind of data.

- $\cdot\,$ Convolutional neural networks are well suited to processing this kind of data.
- \cdot In particular they can take advantage of shape information on scales larger than one pixel to differentiate features that look similar in raw pixel values.

- $\cdot\,$ Convolutional neural networks are well suited to processing this kind of data.
- \cdot In particular they can take advantage of shape information on scales larger than one pixel to differentiate features that look similar in raw pixel values.