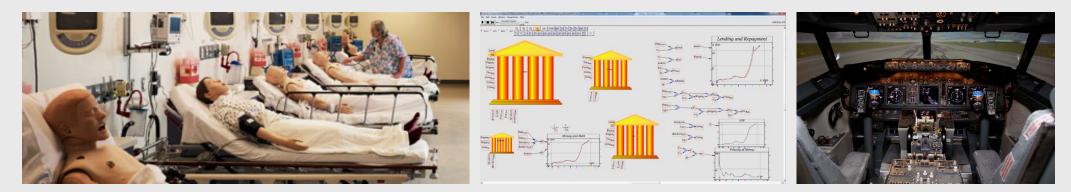
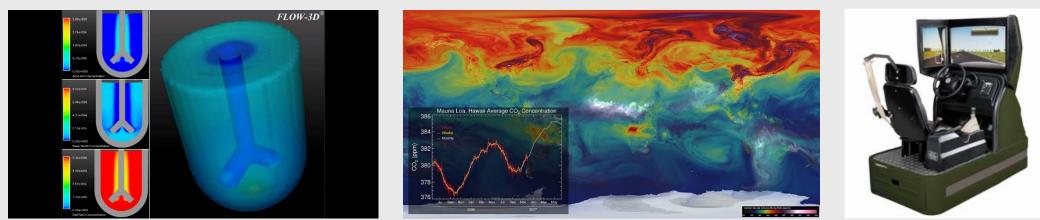


Role of Simulation in Machine Intelligence: Beyond Synthetic Data

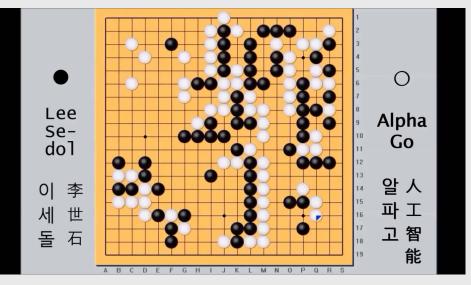
Ashish Kapoor

Modeling and Simulation: Foundation of Modern Engineering





Simulation has enabled several successes of ML



ybrid Reward Architecture		
		30455× 10-304550
	-	801× 50- 40050
	8	17× 200= 3400
المعرجيات ليعرفنا والقتاقة	0.000	6× 400+ 2400
	1000	3× 800+ 2400
		1×1600= 1600
	20	100+ +001 ×5P
		0008 -005 ×0P
		33× 500= 16500
	222	43× 700= 30100
CCC 2	ciji	48×1000= 48000
999900		41×2000= 94000
	1	89×5000=445000
evel: 20]		999900

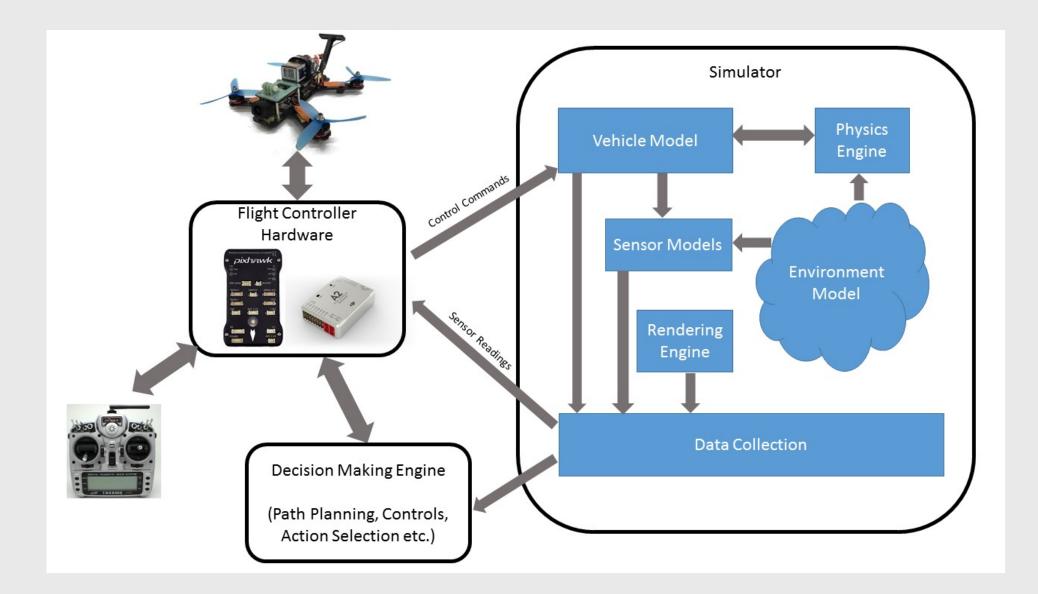
"Closed-world" systems make simulating millions of trials easy.

Initial Atari ~ 10M frames Agent57 ~ 80 billion frames Alpha Go ~ 130M self-plays Dota 2 ~ 45000 years of Dota selfplay (10 months)

Microsoft AirSim

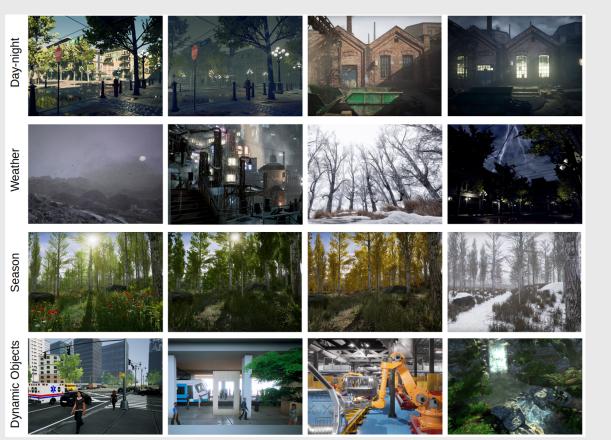
Shah, S., Dey, D., Lovett, C., & Kapoor, A. (2018). Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In Field and service robotics (pp. 621-635). Springer, Cham.

AirSim Architecture



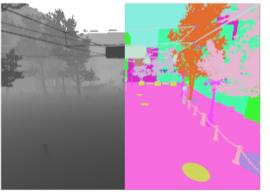
Simulation Centric Data Strategy with AirSim

- O 20 Environments
- 500+ Trajectories
- 0 400,000 + Frames
- O Diverse Motion Patterns
- O Multiple Sensor Modalities

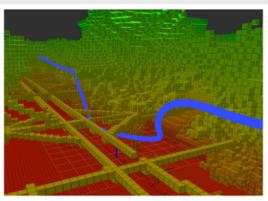


In the works: 100+ Environments, 2000+ Trajectories, 2M+ Frames, Novel Sensors

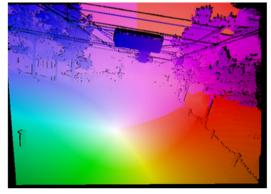
Stereo sequence



Depth/Segmentation



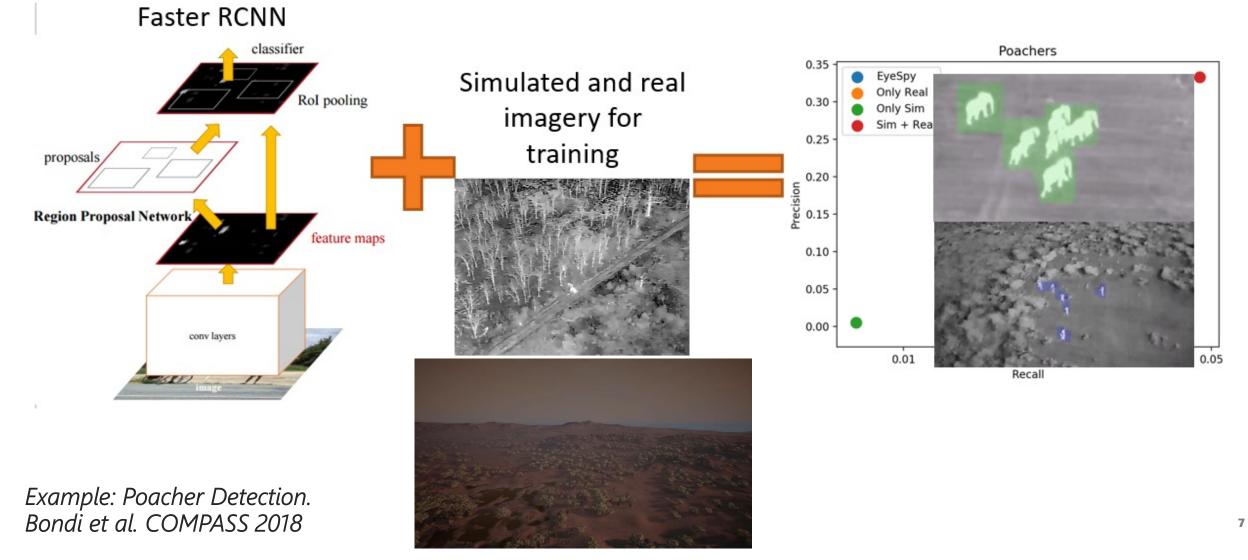
Camera pose/IMU



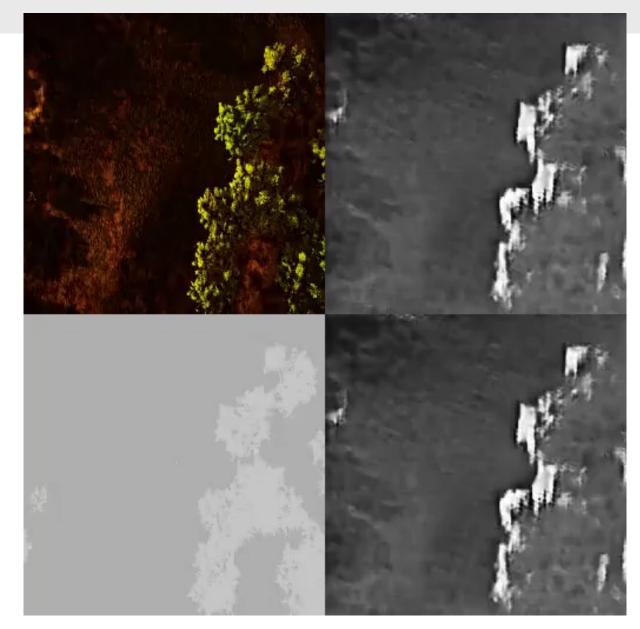
Optical flow

NEAR INFINITE DATA

Supervised Learning to Detect Poachers



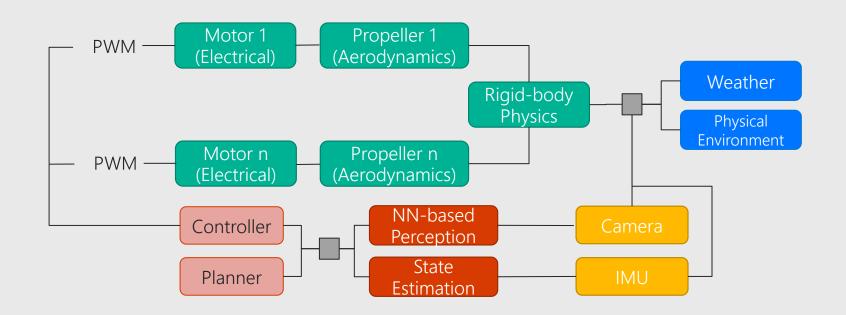
New Sensor Simulations – GANs etc

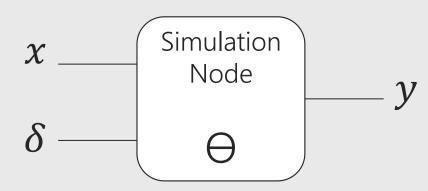


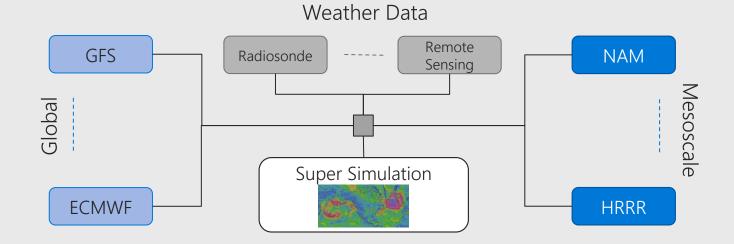
Berry et al. 2019

Data-driven composition of simulators

Data-driven Differentiable Neural







COMPASS.VO Current Achievements – Drone Racing

Input

Output

COMPASS

Onboard camera image of gate from drone

CM-VAE

3D velocity command for drone to reach gate

Background Color mismatch Visual distractions

Effect of occluded images Effect of drastic motion patterns 100 100 Scratch PolicyNet CPC CMC 80 80 CM-VAE Success rate (%) COMPASS 60 60 40 40 20 20 2 3 0 2 3 0 Amplitude (meters) Occlusion (count)

Perception:

>> SCRATCH

- > SOTA pre-training approaches
- >= SOTA task-specific approach

Policy:

Robust to drastic motion patterns Robust to poor quality inputs

Model	Radius r[m]	Azimuth $\theta[\circ]$	Polar $\psi[\circ]$	Yaw $\phi[\circ]$
SCRATCH	0.41±0.013	2.40 ± 0.14	2.50 ± 0.14	11.0±0.67
CM-VAE	$0.39 {\pm} 0.023$	2.30 ± 0.23	2.10 ± 0.23	9.70±0.75
CPC	$0.36 {\pm} 0.020$	2.35 ± 0.21	2.00 ± 0.24	11.1 ± 0.75
CMC	$0.38 {\pm} 0.018$	2.26 ± 0.25	2.12 ± 0.25	11.0 ± 0.72
COMPASS	$0.31{\pm}0.016$	$2.09{\pm}0.17$	$1.98{\pm}0.17$	10.03 ± 0.82

Microsoft

Enabling Autonomy – Imitation and RL for Racing

Zadok et al. 2020

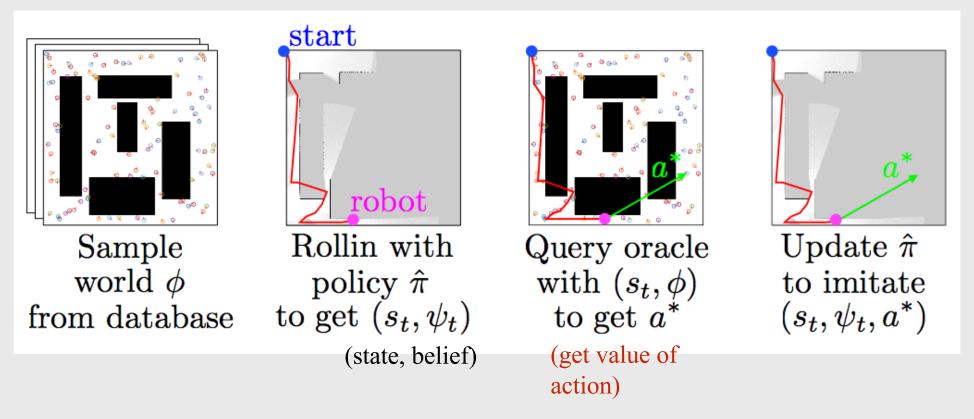
Example: Optimal Scanning. What Trajectory to Fly?

- Safety: How risky are the flight maneuvers?
- Efficiency: How long does the process take?
- Performance: How good is the 3D model?

Roberts et al. ECCV 2018

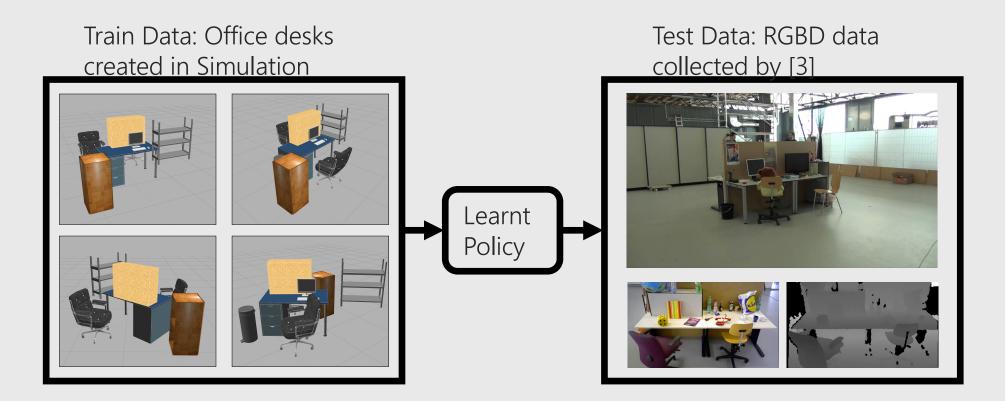
ExpLOre: Imitating an oracle

ExpLOre trains a policy to imitate the cost-to-go provided by an oracle



"Learning to Gather Information", Choudhury et al. ICRA 2017

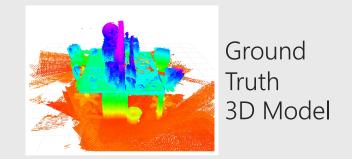
Example: 3D reconstruction of office scene

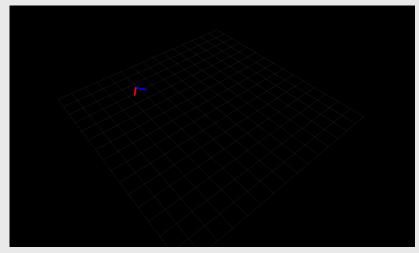


We train ExpLORE on synthetic data, and test on real data.

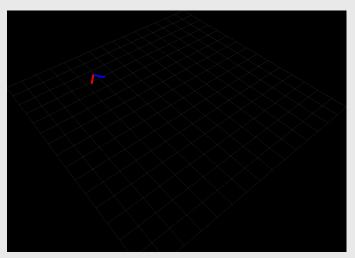
3. "A benchmark for the evaluation of rgb-d slam systems" J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. *IROS*, 2012

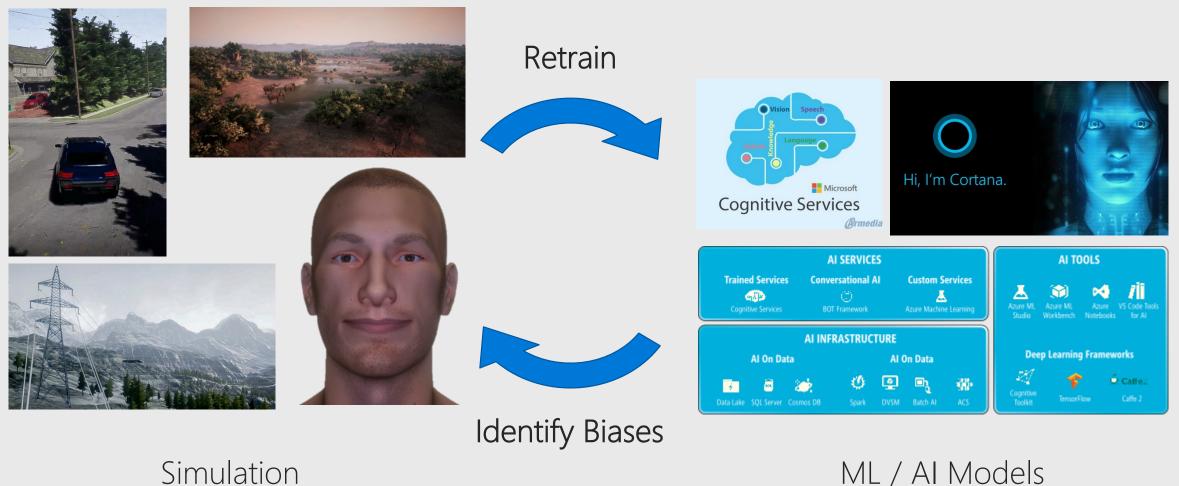
ExpLOre learns "desk exploring" policy





Occlusion Aware Heuristic

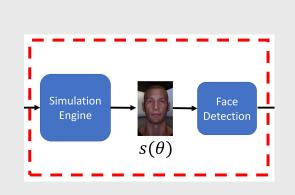


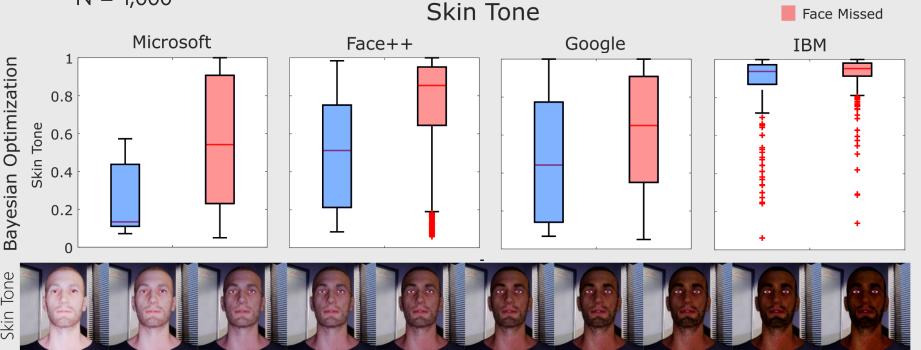


ML / AI Models

Al systems are often biased because the data used to train them is biased. We use high-fidelity simulations to diagnose biases within ML classifiers.

Face Detected



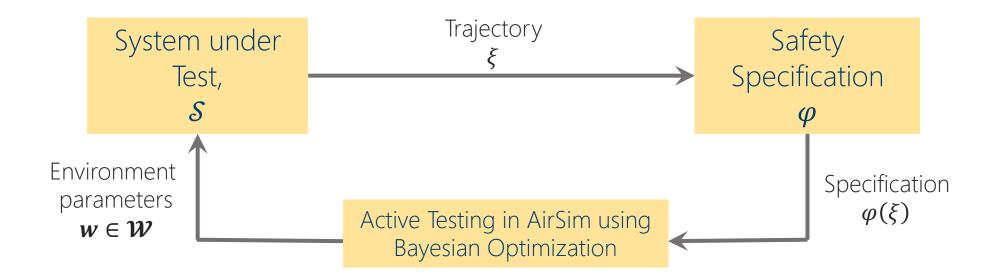


N = 1,000

Skin Tone

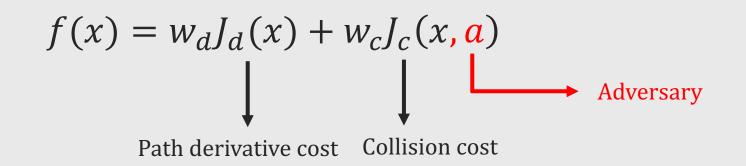
Microsoft Testing, Verification and Robustness

Testing, Verification and Robustness

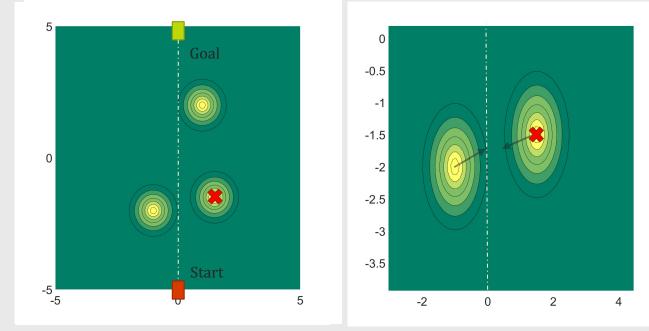


Ghosh et al. ICRA 2018

Adversarial Attacks on Optimization based Planners



This adversary (*) can make the optimization problem harder.



Poor condition number!

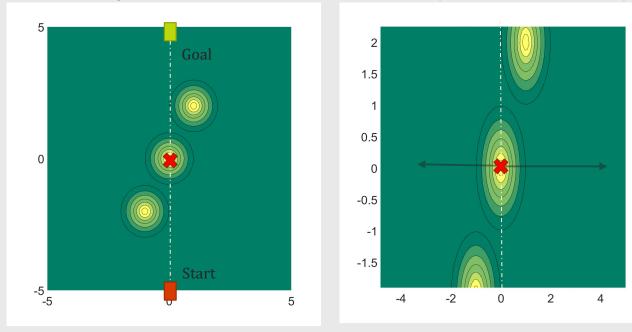
Vemprala et al. ICRA 2021 https://arxiv.org/abs/2011.00095²²

Adversarial Attacks on Optimization based Planners

$$f(x) = w_d J_d(x) + w_c J_c(x, a)$$

Path derivative cost Collision cost

This adversary (*) can make the optimization problem harder.



Poor condition number!

Vemprala et al. 2020 https://arxiv.org/abs/2011.00095

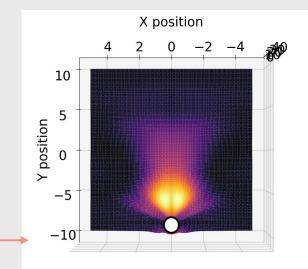
Black box attacks:

1. Model planner behavior by observing extent of deviation of trajectory for a given obstacle location.

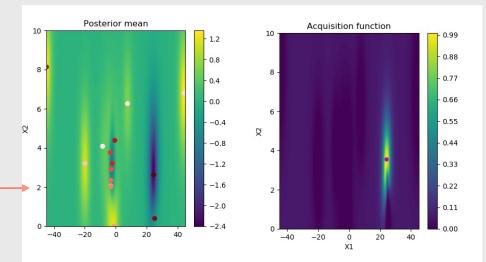
Fit a Gaussian Process between position of adversary and expected deviation

2. Find maximum of the above function to identify locations that can cause the most deviation.

Use Bayesian Optimization to compute _ optimal adversary position given target state

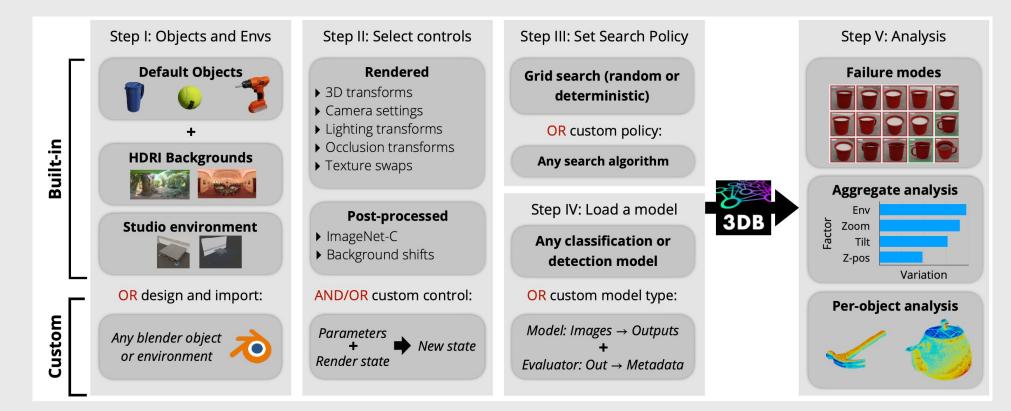


Adversary position vs. expected deviation

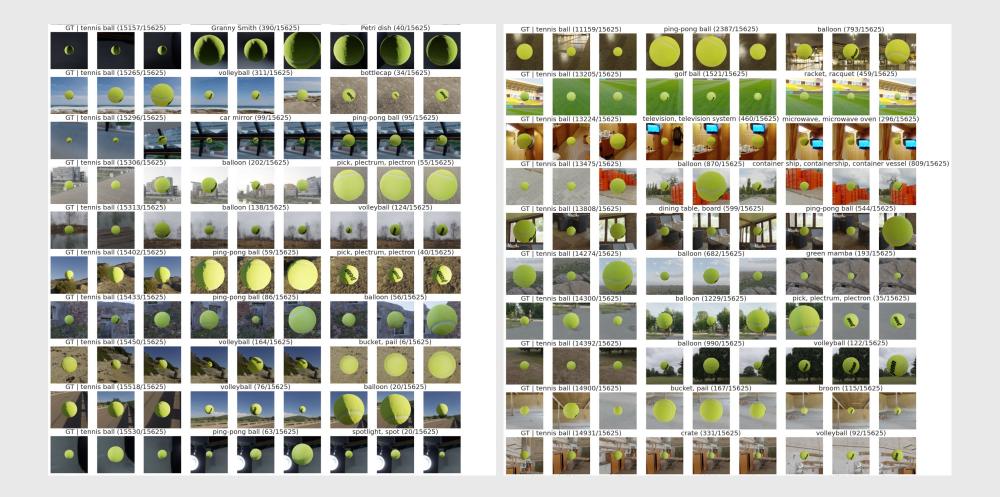


Optimal adversary position via Bayesian opt.

3DB Workflow



Example Images



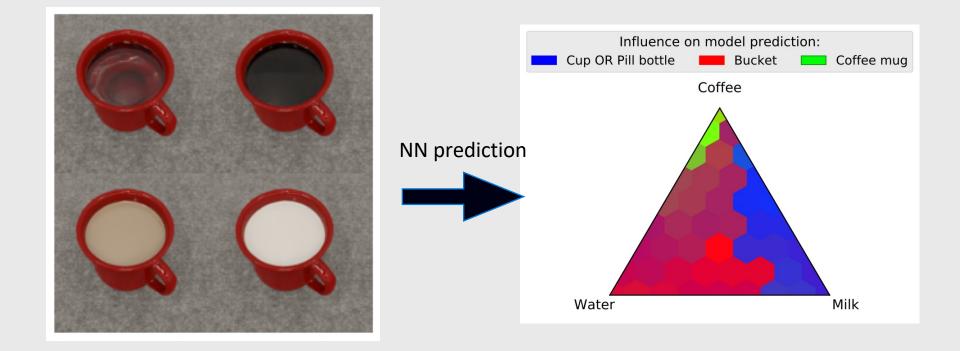
Case-Study: Coffee Mug

Hypothesis: classifier relies on the contents of the mug to correctly classify it

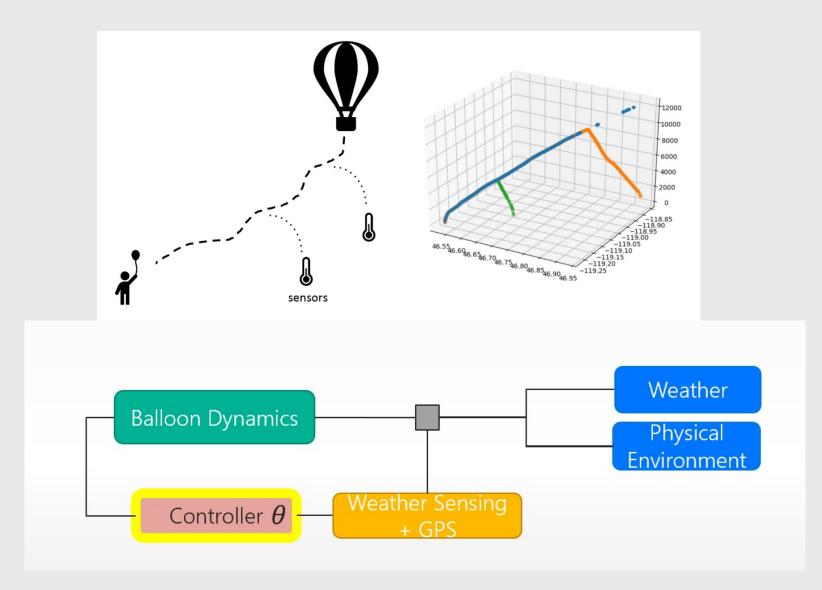
Can we leverage 3DB to **confirm or refute** this hypothesis?

Case-Study: Coffee Mug

Experiment: Fill the mug with various fluids and check predictions

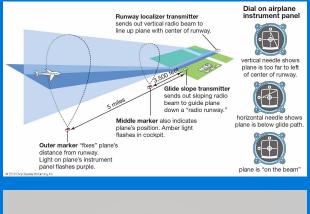


Indeed the mug's prediction relies on the fluid inside!



Stratospheric Weather Modeling with Active Sensing ^

Instrument Landing System



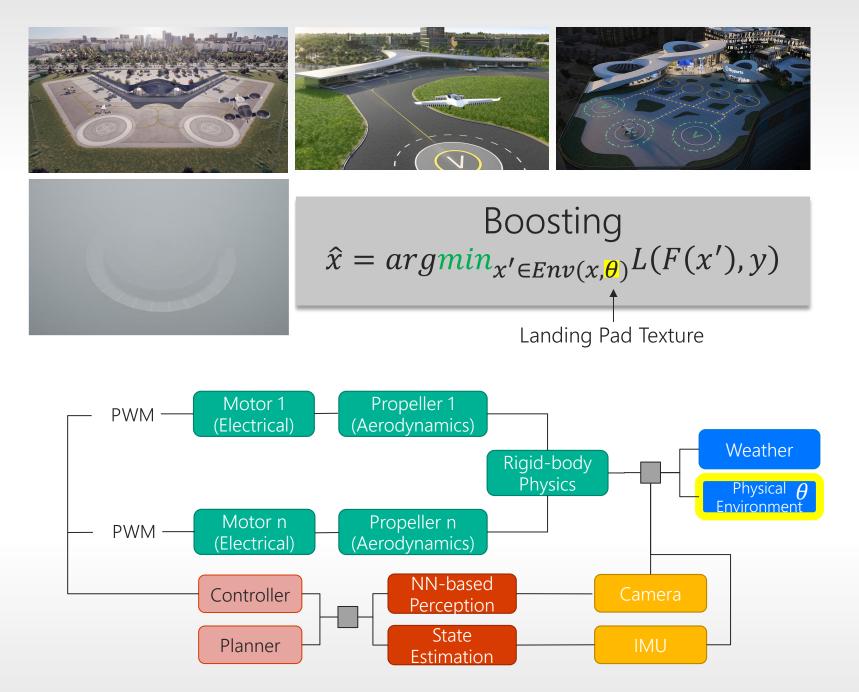
Fewer than 20% Airports have any kind of ILS, Expensive, Requires trained human-in-loop

"panda" 57.7% confidence

99.3% confidence

"gibbon"

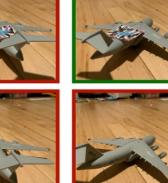
Attack $\hat{x} = argmax_{x' \in N(x,\epsilon)} L(F(x'), y)$



Unadversarial Examples: Designing Real-World Objects to Aid Neural Networks

Normal

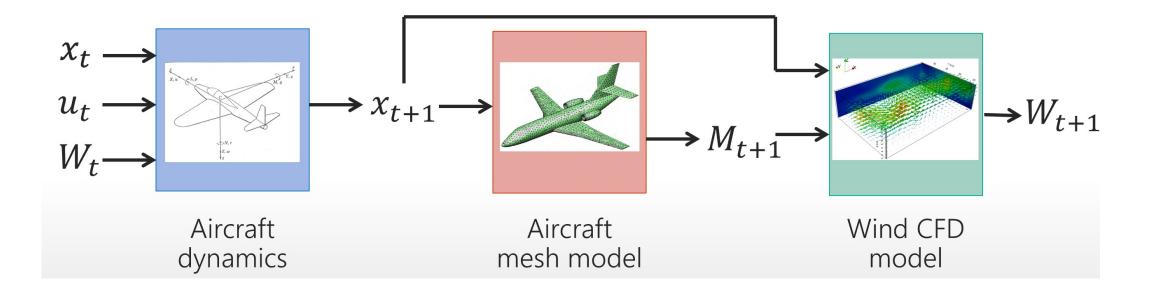
31

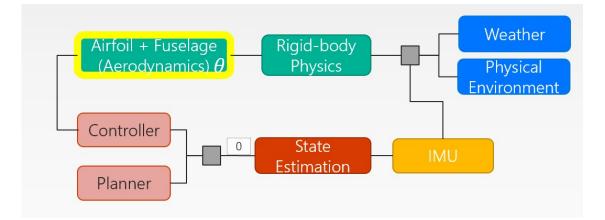


See Salman et al. [21] for details

Plane without patch (67% accuracy)

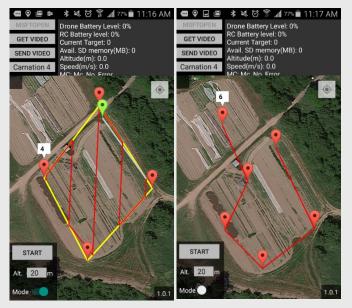
Car without patch (46% accuracy)

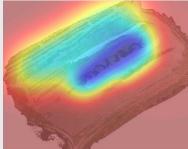




Smart Shape Aerodynamic Models*

Example: AgloT + ML





Farmbeats, Chandra et al.

AirSim visualization/simulation with real-time data.

Bell's CES live display

