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Problem setting Proposed Model Experimental results

Motivation

Molecule property prediction

What about the inverse? → Goal-directed generation of molecules
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Problem setting

Suppose we have:
training set D = {(xi, yi)}N

i=1, where xi represents the molecules and
yi ∈ Y is the corresponding property vector
and we have access to oracle function f that map xi to yi.

Goal: Learn a a generative model that can model pθ(x|y) ≈ p̃(x|y)
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Maximizing expected reward

When there is a natural notion of distance D(y, y′) for values in Y , then we can define:
A reward R(x; y) for each x and for a given state y

R(x; y) = exp{−D(f (x), y)}. (1)

pθ(x|y) defines a stochastic policy which is a distribution over x for a given state y.

Learn the model pθ(x|y) by optimizing the expected reward:

Expected reward:

J = Ep̃(y)Epθ(x|y)[R(x; y)] (2)
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Score-function gradient estimator

Standard way: use score function estimator to avoid non-differentiablity and taking derivative of
the expectation:

∇θJ = Ep̃(y)Epθ(x|y)[R(x; y)∇θ log pθ(x|y)]. (3)

Noisy gradient⇒ Sample inefficient

Need warm start from a pretrained model.

Need control variate
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A computationally efficient alternative

Assume we have a finite non-negative reward function R(x; y), with 0 ≤ R(x; y) <∞, and let
c(y) =

∑
x R(x; y)

We can then rewrite the objective in Eq. (2), observing that

The gradient is now:

∇θJ = Ep̂(y)c(y)ER̄(x|y)[∇θpθ(x|y)]. (4)

Sample efficient.

No need for control variate, warm start.

Need an R̄ that defines a reward distribution where we can sample from.

dmml.ch 6 / 20 Goal directed conditional



Problem setting Proposed Model Experimental results

Sampling from the normalized reward distribution

Re-express the normalized reward distribution in terms of a distribution over training
indices.

ER̄(x|yi)
[log pθ(x|yi)] ≈

N∑
j=1

R̄(xj|yi) log pθ(xj|yi) ≈ Ep(j|i)[log pθ(xj|yi)] (5)

where the distribution over indices p(j|i) is defined as

p(j|i) =
R(xj; yi)∑N

j=1 R(xj; yi)
. (6)

R̄(xj|yi) =
R(xj; yi)∑

x R(x; yi)
(7)
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Experiment settings

Tasks
proof of concept: generating python integer expressions that evaluate to a
given value

Final goal: generating molecules which should exhibit a given set of
properties
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Toy dataset

Synthetic data for expressions
Properties: evaluate to certain values
Examples of generated expression that evaluates to 100:

Generation performance

Objective Valid Unique Novel

ML 0.9888± 0.0002 0.9681± 0.0004 0.9301± 0.0003
Ours 0.9903± 0.0003 0.9635± 0.0006 0.9271± 0.0005

Table 1: Python integer expression generation results

Conditional generation performance

MAE Accuracy Within± 3 − log p(x|y)

ML 13.917± 0.117 0.166± 0.001 0.596± 0.001 1.830
Ours 11.823± 0.145 0.166± 0.001 0.682± 0.001 1.986

Table 2: Python integer expression conditional generation results
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Conditional generation of molecules

Experimental setup:
Dataset: QM9 [Ramakrishnan et al., 2014], ChEMBL [Mendez et al., 2018]

Molecule representation: SMILES strings [Weininger, 1988]

Properties: Nine molecule properties including both continuous and discrete values 1

How often the model generate valid, unique, novel molecules?

QM9 ChEMBL
Model Valid Unique Novel Valid Unique Novel

ML 0.962 0.967 0.366 0.895 0.999 0.990
Ours 0.989 0.963 0.261 0.945 0.9986 0.981

Table 3: Molecule generation quality.

1#rotatable bonds, #aromatic rings, logP, QED-score, tpsa, bertz, molecule weight, atom Counter,
#ringstion
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Generation performance

How plausible the generated molecules?

Generation quality filter [Brown et al., 2019]: aim to detect those which are “potentially
unstable, reactive, laborious to synthesize, or simply unpleasant”

Generated molecules Random sample from ChEMBL test set

71.3% 72.2%

Table 4: Percentage of the molecules that pass the filter.

Example of generated molecules from the ChEMBL model

Figure 1: Those which fail to pass the quality filter are marked in red.
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Conditional generation performance

QM9: MSE
Model rotatable bonds aromatic rings logP QED TPSA bertz mol weight fluorine count # rings
ML 0.0468 0.0014 0.0390 0.0010 11.18 80.77 4.425 0.0023 0.0484
Ours 0.0166 0.0005 0.0184 0.0004 3.859 63.67 1.184 0.0004 0.0120

QM9: Correlation coefficient
ML 0.9809 0.9944 0.9805 0.9063 0.9871 0.9843 0.9651 0.9783 0.9817
Ours 0.9937 0.9972 0.9901 0.9634 0.9954 0.9840 0.9887 1.0000 0.9948

ChEMBL: MSE
ML 0.1552 0.0388 0.1450 0.0050 27.64 1708. 103.9 0.0128 0.0226
Ours 0.1555 0.0268 0.1320 0.0046 35.05 2512. 174.9 0.0074 0.0191

CheEMBL: Correlation coefficient
ML 0.9936 0.9862 0.9777 0.9450 0.9906 0.9934 0.9956 0.9940 0.9931
Ours 0.9934 0.9901 0.9796 0.9496 0.9878 0.9902 0.9926 0.9966 0.9943

Table 5: Conditional generation performance for the molecules datasets.
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Conditional generation performance

Can the model generate various molecules for a fixed property vector?

Figure 2: Molecules generated from a given property value vector for QM9 MODEL. The
boxed ones are molecules that have not been seen before.
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Sequence diversification

To encourage a more diverse exploration of the sequence space and thus more diverse
generations, we couple our objective with an entropy regulariser:

max
θ

N∑
i=1

[ER̄(x|yi)
[log pθ(x|yi)] + λH(pθ(x|yi))]. (8)

In a discrete sequence model the gradient of the entropy term can be computed as

∇θH(pθ(x|y)) = −∇θEpθ(x|y) log pθ(x|y)

= −Epθ(x|y)[(1 + log pθ(x|y))∇θ log pθ(x|y)]; (9)

En efficient approximation of the entropy:

H(pθ(x|y)) ≈ H[pθ(x1|y)] +
T∑

t=2

[
H[pθ(xt|x∗1:t−1, y)]

]
.

where x∗t is the maximum probability element at each step.
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More baselines

Data augmentation on discrete sequences:
RAML [Norouzi et al., 2016]: maximizes a conditional log probability of the augmented
versions of the training instances.

Edit distance augmentation

m validity unicity MSE

One 0.265 0.322 194.945
Two 0.095 0.421 468.556
Three 0.046 0.393 725.128
Four 0.0276 0.422 985.451
Five 0.0204 0.480 1496.023
Six 0 - -

Table 6: Edit distance augmentation
evaluation on QM9 dataset

Table 7: Effect of the entropy on the
generated sequences from the validation
set.

Data augmentation fails when the underlying sequences properties are sensitive to local change.
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De Novo Molecular Design

Global optimization: generating
from scratch

learning pθ(x|y)

Local optimization: starting from a
prototype molecule

Figure 3: [Green et al., 2020]

learning pθ(x|y, z) where
z ∼ q(z|x), style transfer

Conditional generation: learning pθ(x|y) with auto-regressive models 2

Style transfer: learning pθ(x|y, z) where z ∼ q(z|x) with VAEs3

2A.Mollaysa, B.Paige, A.Kalousis, Goal-directed Generation of Discrete Structures with Conditional Generative Models,
NeurIPS 2020.

3A.Mollaysa, B.Paige, A.Kalousis, Conditional generation of molecules from disentangled representations, Machine
Learning for Molecules Workshop NeurIPS 2020
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Auto-regressive models
have very good validity and conditional generation performance
can not do style transfer

Latent variable models
can do style transfer
poor validity and poor style transfer/conditional generation performance

Figure 4: A comparison of simulated logP values and Tanimoto similarity to a target on the
ZINC dataset.
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Auto-regressive models VS latent variable models

Model encoder decoder validity Conditional generation
z ∼ p(z) z ∼ p(z) z ∼ q(z|x)

CVAE [Lim et al., 2018] LSTM LSTM w.o. Teacher forcing 0.6% 0.0012% 0.0147%
SSVAE [Kang and Cho, 2018] bi- GRU GRU w. Teacher forcing 99.3 75.6% 78.0%

Table 8: Comparison in terms of network structure and generation strategy
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Combining the best of two world

Possible solutions
provide supervision to for style transfer: using a pre-trained p̃(x|y) as a
regularizer:

max
θ

Ex∼pθ(x|y,z)Ez∼p(z) log p̃(x|y) (10)

learn an auto-regressive model p(x|y, z) that condition on both y and z,
where z is a learned structural representations of the molecule.
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Numerical instability

To avoid numerical instability when pθ(x|y) takes very small values, we instead work in terms
of log probabilities:

arg max
θ
J = arg max

θ
logJ , (11)

where we then have

logJ = log
(
Ep̃(y)c(y)ER̄(x|y)[pθ(x|yi)]

)
≥ Ep̃(y)ER̄(x|y)[log pθ(x|y)] + const.

which motivates optimizing a lower-bound on logJ ,

L = Ep̃(y)ER̄(x|y)[log pθ(x|y)] (12)

and whose gradient is simply

∇θL = Ep̃(y)ER̄(x|y)[∇θ log pθ(x|y)]. (13)
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Conclusion

We present a simple, tractable, and efficient algorithm to learn the conditional
distribution of molecules.

By sampling directly from the approximate normalized reward distribution,our
approach sidesteps challenges of directly maximizing an expected reward.
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