Machine Learning @ Facebook
Understanding Inference at the Edge

Brandon Reagen
Research Scientist @ FAIR

AMLD, Switzerland 2020



TRANSLATION ADS

Machine Learning @ FB SEARCH

ﬁ Carole-Jean v  Home  Create

| Ranking of posts in news feeds g::;:j

g Videos on Watch

ﬁ Marketplace

Shortcuts

&2 Parents @ FB Bost...

i The Foodie Army

Object detection, segmentation, =

a» Princeton Associat...

&;°£ My Intel Internship

] and classification =

a» Housing @ Faceb...

v See More...

Explore

@ Groups
}U Pages ( SZ e i | \
Speech recognition / translation N . . s T e

| "u : D S T Brasil) - Frangais (France)
a Saved O o | / 1+ e AN
@ Fundraisers ke &> Share :

Facebook © 2019
v See More.. h N © © 6 G aceboo

TT1:2.8s00 335 | |8 | (D || S || &% ||@3 @ | Chat(l

High model diversity FACE TAGGING
E Large request volume

NEWS FEED



From data centers to the edge

Minimizing network bandwidth

Improving response latency

Exploiting features available only at the edge

NN Keypoints Augmented Reality
— Segmentation with Smart Camera
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Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective. Hazelwood et al. HPCA "18.
The Architectural Implications of Facebook’s DNN-based Personalized Recommendation. Gupta et al. HPCA ‘20



Challenges of Complex Models on Constrained Edge Devices

Edge inference is enabled by the ever-increasing mobile performance

Increasing core counts leads to theoretical peak performance increase
But, when looking at the entire ecosystem, the theoretical peak performance is widespread
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Unique Challenges for Edge vs Cloud

‘ Diversity of Mobile Hardware and Software is Not Found in the Cloud

) 20+

MAJOR MOBILE OS MAJOR CPU UARCH

10+

MAJOR GPU UARCH

3 20+

MAJOR GRAPHICS APIs MAJOR CHIPSET VENDORS

How do we optimize

system designs for
real-time ML

inference?
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N7 Fragmentation

There is no standard mobile SoC
to optimize for.
Mobile CPUs Show Little

MQ Diversity

Performance

The Performance Difference
between a Mobile CPU and GPU
is Narrow

Programmabilit
Y

Programmability is a Primary
Roadblock for Using Mobile Co-




& Lay of the Land
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| Can we optimize for the common case?

¢ Qualcomm Snapdragon
* Samsung Exynos

MediaTek Helio
225 SoCs .

HiSilicon Kirin et al.

, 50 SoCs

CDF of SoCs

Unique SoCs (>2000)
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Lay of the Land: CPU Cores
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| In 2018 ~28% of SoCs Use CPUs Designed in 2013 or Later

2011 and
before
17%
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72%

OF THE WORLD’S CELL PHONES
ARE MORE THAN 7 YEARS OLD

<




Lay of the Land: Achieving High Perf. With Accelerators
O—--l PERFORMANCE ---. O

| The Performance Difference between a Mobile CPU and GPU is Narrow
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Lay of the Land: Programmability

- = - PROGRAMMABILITY = - .

Programmability is a Primary Roadblock for Using Mobile Co-processors
e OpenCL, OpenGL ES, Vulkan for Android GPUs
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Quantitative Approach to Mobile Inference Designs

| State of the Practice for Mobile Inference is CPUs

& 8

FRAGMENTATION PERFORMANCE
Over 2000+ different SoCs Performance difference between
Mobile CPUs show little diversity mobile CPUs and GPUs is narrow

ARM'’s A53 dominates market

1.

PROGRAMMABILITY

Programmability major
road-block for co-processors (e.g.
,Android GPUs)
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- Vertical Integrated Systems
| Processing Inference for Oculus VR
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Vertical Integrated Systems

| Performance Acceleration with Co-processors

DNN Features MACs Weights
Segmentation 1X 1.5X
Hand Tracking 10X 1X
Image Model 1 10X 2X
Image Model 2 100X 1X
Pose Estimation 100X 4X

Co-processor speedup
2x not 10x (or 100x)

Inferences per Second
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Vertical Integrated Systems

P& . .
I | Making Inference on DSPs Leads to Consistent Performance
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~ Inference in the Wild

Find Performance Variability in Same Layer and Device
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Mobile scheduler optimizations for the best case

leads to sub-optimal energy efficiency [3]
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Can use well-known statistical distribution to
describe performance variability314

Percentage
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[Metrics] Need more comprehensive metrics for fair,
representative evaluation!
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[3] Improving Smartphone User Experience by Balancing Performance and Energy with Probabilistic Guarantee. Gaudette et al. HPCA-2016.
[4] Optimizing User Satisfaction of Mobile Workloads Subject to Various Sources of Uncertainties. Gaudette et al. TMC-2018.



Inference in the Wild:
Performance
Variability
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