

Regression Transformer

Concurrent Property Prediction and Conditional Molecular Generation by Blending Numerical and Textual Tokens

Applied Machine Learning Days (AMLD) Track: *AI & the molecular world*

> Jannis Born 30.03.2022

Regression Transformer (RT)

• Formulate regression as a conditional sequence modelling problem

Regression Transformer (RT)

• Formulate regression as a conditional sequence modelling problem

 This yields a dichotomous model that can seamlessly transition between property prediction and property-driven conditional text generation

Motivation I: Decline of inductive biases

- 2012: AlexNet CNNs for object recognition (Krizhevsky et al., NeurIPS)
- 2015: Self-attention generalizes fully-connected layers (Luong et al., EMNLP)
- 2017: Transformers supersede RNNs in NLP (Vaswani et al, NeurIPS)
- 2019: Vision Transformers can match CNNs (Ramachandran et al, NeurIPS)

- 2021: Transformers are universal computation engines (Lu et al, AAAI)
- 2021: Abstract offline RL to sequence modelling (Chen et al., NeurIPS)

Motivation II: Generative Chemistry Canonical approach

Predictive model

Generative model

IBM **Research** Europe

Motivation II: Entangle prediction & generation Regression Transformer approach

IBM **Research** Europe

Tokenization

Numbers are tokenized into sequences of "numerical tokens"

<QED>0.51 <Tox>1.4 N#[N+][N-]c1ccc(C)cc1

<QED> 0_0 _. _5_-1 _1_-2 <Tox> 1_0 _. _4_-1 N ...

IBM **Research** Europe

8

Accelerated Discovery Team / March 2022 / © 2022 IBM Corporation

RT backbone: XLNet model

- XLNet A bidirectional, autoregressive Transformer (Yang et al, 2019, NeurIPS)
- Train with Permutation Language Modeling (PLM)
- PLM: Sample factorization order at runtime

1. Overcomes BERT's independence assumption in multiple token generation Example: *The largest city in the US is [MASK]* [MASK]

2. Unlike GPT-2, XLNet fully attends contextual information from both sides Example: The city [MASK] [MASK] has the largest population in US

IBM Research Europe

Training objectives

• Vanilla PLM objective

$$\max_{\theta} \quad \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_T} \left[\sum_{t=1}^T \log p_{\theta}(x_{z_t} \mid \mathbf{x}_{\mathbf{z}_{< t}}) \right].$$

<QED>0.51|N#[N+][N-]c1ccc(C)cc1

Randomly mask 20% of tokens

Molecular property prediction

- Dataset: Synthetic data of QED scores of molecules
- Evaluation queries: <QED ><M ASK><M ASK><M ASK><M ASK> |N#[N+][N-]clccc(C)ccl

Configura	tion ¦	Regress	sion task
Data	NE Perpl.	RMSE	PCC (\uparrow)
SMILES	- + 1.55	+ 0.0549	0.972
SELFIES	- 1.61	0.0591	0.968
SELFIES	✓ 1.59	0.0547	0.971

Comparison to conventional regression models

Model	MAE (\downarrow)
k-NN (baseline)	0.054
SMILES-BERT (Kim et al., 2021)	0.020
RT - PLM objective	0.035

 No regression loss! This is achieved <u>despite</u> casting regression as a conditional sequence modelling problem & training with cross entropy loss.

IBM **Research** Europe ¹¹

Conditional molecular generation

- Task: Substructure-constrained, property-driven molecular generation
- Evaluation queries: <qed>0.26|c1<Mask><Mask><Mask>cc1occ(=0)Nc<Mask><Mask>=c(Nc..

Configura	tion ¦ ¦	Regress	ion task	Generatio	on task
Data	NE Perpl.	RMSE	PCC (\uparrow)	0-Var (↓)	ho (†)
SMILES	- 1.55	0.0549	0.972	1.6%	0.096
SELFIES	- 1.61	0.0591	0.968	0.9%	0.427
SELFIES	✓ 1.59	0.0547	0.971	0.3 %	0.467

• ρ is the Spearman correlation between the QED score of 10 property primers/prompts (0.1 – 0.9) and the QED of the obtained molecules

Refined, alternating training objectives

Vanilla PLM objective (Yang et al, NeurIPS)

 $\mathcal{J}_{PLM} = \max_{\theta} \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_{\mathcal{T}}} \left[\log p_{\theta}(\mathbf{x}_{\mathbf{z} > c} | \mathbf{x}_{\mathbf{z} \le c}) \right]$

• Property prediction objective

 $\mathcal{J}_P = \max_{ heta} \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_T^p} \left[\log p_{ heta}(\mathbf{x}^p | \mathbf{x}^t)
ight]$

<QED>0.51|N#[N+][N-]c1ccc(C)cc1

Randomly mask 20% of tokens

• Self-consistency objective for conditional generation

 $\mathcal{J}_{SC} = \mathcal{J}_G(\mathbf{x}) + \alpha \cdot \mathcal{J}_P(\mathbf{\hat{x}})$ with $\mathcal{J}_G = \max_{\theta} \mathbb{E}_{\mathbf{z} \sim \mathcal{Z}_T^t} \left[\log p_{\theta}(\mathbf{x}_{\mathbf{z}>c}^t | \mathbf{x}_{\mathbf{z}\leq k}^p, \mathbf{x}_{\mathbf{z}>k< c}^t) \right]$ **QED>0.51 N#**[**N+**][**N-**]**c1ccc(C)cc1 QED> 0.51 N#**[**N+**][**N-**]**c1ccc(C)cc1 Randomly masked H NM Mask Generated before**

Property prediction w/ alternating objectives

Regression

• Same dataset: Synthetic data of QED scores of molecules

Model	RMSE	PCC
RT – PLM objective	0.0547	0.971
RT – Refined objective	0.0367	0.987

Comparison to conventional regression models

Model	MAE (\downarrow)
k-NN (baseline)	0.054
SMILES-BERT (Kim et al., 2021)	0.020
RT - PLM objective	0.035
RT - Alternating objective ($\alpha = 0$)	0.017

Conditional generation w/ alternating objectives

Same dataset: Synthetic data of QED scores of molecules.

Regression			Gene	ration
Model	RMSE	PCC	0-Var	Spearman
RT – PLM objective	0.0547	0.971	0.3%	0.47
RT – Refined objective	0.0367	0.987	0.2%	0.52

Comparison to conventional regression models

Model	MAE (\downarrow)
k-NN (baseline)	0.054
SMILES-BERT (Kim et al., 2021)	0.020
RT - PLM objective	0.035
RT - Alternating objective ($\alpha = 0$)	0.017

Molecular property prediction

• Real datasets: Solubility & lipophilicity (MoleculeNet benchmark)

					$\sim - \langle \cdot \rangle$
Configurat	ion	1		<u>Dataset</u>	
Model	NE	α_{\perp}	ESOL	FreeSolv	Lipo.
RF	—	— I	$1.16 \pm_{0.15}$	$2.12 \pm_{0.68}$	$0.78 \pm_{0.02}$
XGBoost		— I	$1.05 \pm_{0.10}$	$1.76 \pm_{0.21}$	$0.84 \pm_{0.03}$
MPNN	-	- !	$0.55 \pm_{0.02}$	$1.20\pm_{0.02}$	$0.76 \pm_{0.03}$
SMILES-BERT		- +	$\bar{0.47}\pm_{0.05}$	0.81 ± 0.09	
Mol-BERT	$\sim - 1$	- ¦	$0.53 \pm_{0.04}$	$0.95\pm_{0.33}$	$0.56 {\pm}_{0.03}$
$\overline{\mathbf{RT}}$ (ours)	x	0	$\bar{0.76}\pm_{0.05}$	$1.19 \pm_{0.29}$	$\bar{0}.\bar{7}6\pm_{0.03}$
RT (ours)	X	1	$0.75 \pm_{0.04}$	$1.32 \pm_{0.39}$	$0.76 \pm_{0.03}$
RT (ours)	1	0	$0.71 \pm_{0.04}$	$1.40 \pm_{0.47}$	$0.74 \pm_{0.05}$
RT (ours)	1	1 ¦	$0.73 \pm_{0.04}$	$1.34 \pm_{0.29}$	$0.74 \pm_{0.03}$

Metric: RMSE (1)

→ RT outperforms baseline methods in molecular property prediction
 → RT cannot beat Transformers with finetuned regression heads

IBM **Research** Europe 16

Conditional molecular design

• But: The RT can *concurrently* generate molecules with desired property

Model		ESC	<u>DL</u>	FreeSolv		Lipophilicity	
WIGUEI	NE	$\alpha \mid 0$ -Var	ρ	0-Var	ρ	0-Var	ρ
RT	X	0 4.4%	0.44	7.9%	0.53	3.6%	0.29
RT	X	1+5.9%	0.46	7.5%	0.56	2.7%	0.35
RT	1	0 + $6.1%$	0.46	8.9%	0.57	4.2%	0.29
RT	1	$1^+6.1\%$	0.47	6.5%	0.57	2.7%	0.34
Х-В	ERT		Task unfeasible				

 E.g., solubility: Rank correlation between the 10 property primers and the (predicted) solubility of generated molecules is ~0.45

Primer: -8.61, ESOL (by RT): -6.58; ESOL (by Grover):-7.44

Primer: -7.23, ESOL (by RT):-5.21, ESOL (by Grover):-5.17

Primer: -5.84, ESOL (by RT): -5.19, ESOL (by Grover):-4.67

Seed ESOL: -3.904

Primer: -4.46, ESOL (by RT): -5.19, ESOL (by Grover): -4.39

Primer: -3.07, ESOL (by RT): -4.78, ESOL (by Grover): -3.73

1 m

Primer: 1.08, ESOL (by RT): -1.30 ESOL (by Grover): -1.78

Primer: -1.69, ESOL (by RT): -3.79, ESOL (by Grover): -2.29

Soluble

Unsoluble

Conditional generation benchmark

• Task: Given a seed molecule, generate molecules with a higher logP score, while adhering to a similarity constraint (δ)

Result:

The RT outperforms competitive approaches in conditional molecular design

JT-VAE: Jin et al., ICLR (2018); GCPN: You et al., NeurIPS (2018)

Accelerated Discovery Team / March 2022 / © 2022 IBM Corporation

Table 6. Constrained property optimization benchmark. JT-							
VAE is from Jin et al. (2018) and GCPN from You et al. (2018).							
	Ge Ge	Generation task					
Model	Improvem.	PCC					
JT-VAE	$0.84_{\pm 1.5}$	$0.51_{\pm0.1}$	83.6%	Unfeasible			
GCPN	$2.49_{\pm 1.3}$	$0.47_{\pm 0.1}$	100%	Unfeasible			
RT (Ours)	3.16 ±1.5	$0.54_{\pm 0.1}$	97.1%	0.92 ±0.0			
	(a) Similar	rity threshold d	$\delta = 0.4$				
	Ge	eneration task		Regression			
Model	Improvem.	Similarity δ	Success	PCC			
JT-VAE	$0.21_{\pm 0.7}$	0.69 ±0.0	46.4%	Unfeasible			
GCPN	$0.79_{\pm 0.6}$	$0.68_{\pm0.1}$	100%	Unfeasible			
RT (Ours)	2.21 ±1.3	$0.69_{\pm 0.1}$	81.8%	$0.92_{\pm 0.0}$			

(b) Similarity threshold $\delta = 0.6$

IBM **Research** Europe ¹⁸

Protein language modeling

Datasets: TAPE benchmark

• RT can match state-of-the art protein language models in protein property prediction (TAPE: Rao et al., NeurIPS 2019; UniRep : Alley et al., Nature Methods 2019)

Table 7. Protein regression tasks. All values in Spearman's $\rho(\uparrow)$.						
TAPE datasets/performances taken from Rao et al. (2019).						
Model	Source	Boman	Fluorescence	Stability		
k-NN	Baseline	0.93	0.59	0.21		
One-Hot	TAPE	-	0.14	0.19		
Pretr. LSTM	TAPE	_	0.67	0.69		
Pretr. Transformer	TAPE	_	0.68	0.73		
Alley et al. (2019)	UniRep	-	0.67	0.73		
RT	Ours	0.99	$0.72_{\pm 0.04}$	$0.71_{\pm 0.02}$		

 Same model can, to some extent, adapt existing proteins to fulfil a property of interest

Model Boman o		dataset	ataset Stability dataset	
Model	Model \downarrow 0-Var (\downarrow)		0-Var (↓)	Spearm. ρ
All TAPE	Task un	feasible	Tasku	feasible
UniRep	1 Iusk un	jeusibie	1 Iusk ur	ijeusibie
RT	$0.2\%_{\pm 0.0}$	$0.84_{\pm0.00}$	$19\%_{\pm 4.5}$	$0.44_{\pm0.01}$

Demo: Generative Toolkit 4 Scientific Discovery

- 1. Predict solubility of a common herbicide
- 2. Generate similar molecules with improved solubility

G₁T SD

Accelerated Discovery Team / March 2022 / © 2022 IBM Corporation

0	Jup	byte	r r	regression-transformer-demo Last Checkpoint: 28 minutes ago (unsaved changes)										e	Logou	t	
File	File Edit		Vie	View Insert		rt	Cell Kernel		el	Widgets Help				Trusted	Python 3 (i	pykernel)	•
8	+	۶	2	ß	•	↓ I	Run		C	•	Code	~					

Demo: Regression Transformer in the Generative Toolkit for Scientific Discovery

In [*]:	<pre>!pip install gt4sd</pre>								
In [1]:	<pre>import logging, sys logging.disable(sys.maxsize)</pre>								
	<pre>from gt4sd.algorithms.conditional_generation.regression_transformer import (RegressionTransformer, RegressionTransformerMolecules)</pre>								
	from rdkit import Chem from selfies import encoder								
	Let us have a look at Buturon, a common herbicide								
In []:	<pre>smi = 'CC(C#C)N(C)C(=0)NCl=CC=C(Cl)C=Cl' Chem.MolFromSmiles(smi)</pre>								
	Buturon has a water solubility score of -3.90								
	Buturon has a water solubility score of -3.90								
	Buturon has a water solubility score of -3.90 We can predict its ESOL (estimated solubility) value with the RegressionTransformer								
In []:	Buturon has a water solubility score of -3.90 We can predict its ESOL (estimated solubility) value with the RegressionTransformer config = RegressionTransformerMolecules(search='greedy') target = f*cesol>[MASK][MASK][MASK][MASK][MASK][4encoder(smi)]" esol_predictor = RegressionTransformer(configuration=config, target=target) score = list(esol_predictor.sample(1)][0] print(f'\nFor Buturuon, the predicted ESOL is (score)')								
In []:	Buturon has a water solubility score of -3.90 We can predict its ESOL (estimated solubility) value with the RegressionTransformer config = RegressionTransformerMolecules(search='greedy') target = f^ceeol>[MASK][MASK][MASK][MASK][Anask][encoder(smi)}" esol_predictor = RegressionTransformer(configuration=config, target=target) score = list(esol_predictor.sample(1))[0] print(f'\nFor Buturuon, the predicted ESOL is {score}') Ok, we can see that the prediction was decently close but not perfect								
In []:	Buturon has a water solubility score of -3.90 We can predict its ESOL (estimated solubility) value with the RegressionTransformer config = RegressionTransformerMolecules(search='greedy') target = f*cesol>[MASK][MASK][MASK][MASK][MASK][encoder(smi)}" esol_predictor = RegressionTransformer(configuration=config, target=target) score = list(esol_predictor.sample(1))[0] print(f'\nFor Buturuon, the predicted ESOL is {score}') Ok, we can see that the prediction was decently close but not perfect Now let us try to Improve Buturuon to a molecule with higher solubility								
In []:	Buturon has a water solubility score of -3.90 We can predict its ESOL (estimated solubility) value with the RegressionTransformer config = RegressionTransformerMolecules(search='greedy') target = f* <esol>[MASK][MASK][MASK][MASK][decoder(smi)}" esol_predictor = RegressionTransformer(configuration=config, target=target) score = list(esol_predictor.sample(1))[0] print(f'\nFor Buturuon, the predicted ESOL is {score}') Ok, we can see that the prediction was decently close but not perfect Now let us try to improve Buturuon to a molecule with higher solubility Note, that we will use the same model to do so!</esol>								

target = "<esol>_3 534 [C][C][Branch1 3][Bing1][C][#C][N][Branch1 3][ensilon][C][C][Branch1 3][ensilon][MASK1[MASK1[MASK1]]

In []: config = RegressionTransformerMolecules(search='sample', temperature=2, tolerance=5)

Regression Transformer - Conclusion

- 1. The RT casts regression as conditional sequence modelling problem
- 2. In some cases, this can match SOTA performance in property prediction tasks despite using a cross-entropy loss
- 3. The same model can outperform specialized generative models in conditional molecular design benchmarks
- 4. This opens the door toward extending self-supervised pretraining to labelled datasets

Thanks for your attention

• Read the full paper on arXiv:

Born, J., & Manica, M. (2022). Regression Transformer: Concurrent Conditional Generation and Regression by Blending Numerical and Textual Tokens. *arXiv preprint arXiv:2202.01338*.

- Further experiments on protein language modelling
- Ablation studies on numerical encodings & more
- Code public: <u>https://github.com/IBM/regression-transformer</u>
- Integrated into GT4SD: Generative Toolkit for Scientific Discovery: <u>https://github.com/gt4sd/gt4sd-core</u>

Accelerated Discovery Team / March 2022 / © 2022 IBM Corporation

Paper

Joint work w/ Matteo Manica

User-model interaction

IBM Research Europe

Inductive bias for numerical tokens

$$NE_{Float}(v,p,j) = (-1)^j \cdot rac{v \cdot 10^p}{j+1}$$

ightarrow Summing with learned embeddings

Accelerated Discovery Team / March 2022 / © 2022 IBM Corporation

IBM **Research** Europe ²⁴

Regression Transformer architecture

<QED>0.428|...|<ESOL>-2.92|N#[N+][N-]c1ccc(C)cc1

Trained with PLM objective or with combined property prediction and self-consistency objective

Sequence decoding in Transformers

Example 1: The largest city in the US is [MASK] [MASK]

Autoregressive model (e.g., GPT-2): $P(y_0|x_0...x_6) \cdot P(y_1|x_0...x_6, y_1)$ BERT: $P(y_0|x_0...x_6) \cdot P(y_1|x_0...x_6)$

 \rightarrow BERT: Independence assumption is prohibitive

Example 2: The city [MASK] [MASK] has the largest population in US

Autoregressive model (e.g., GPT-2): $P(y_0|x_0, x_1) \cdot P(y_1|x_0, x_1, y_0)$ BERT: $P(y_0|x_0, ..., x_7) \cdot P(y_1|x_0, ..., x_7)$

→ Autoregressive model is blind to the future

IBM **Research** Europe ²⁶

RT backbone: XLNet model

- Solution: XLNet A bidirectional, autoregressive Transformer (Yang et al, 2019, NeurIPS)
- Train with Permutation Language Modeling (PLM)
- PLM: Sample factorization order at runtime

1. Overcomes BERT's independence assumption in multiple token generation

2. Unlike GPT-2, XLNet fully attends contextual information from both sides Accelerated Discovery Team / March 2022 / © 2022 IBM Corporation 27

Protein design

• Dataset: Fluorescence & stability dataset are from TAPE benchmark

Same model can, to a decent extent, adapt existing proteins to fulfil a property of interest

Protein property prediction

• Dataset: Fluorescence & stability dataset are from TAPE benchmark

Table 7. Protein regression tasks. All values in Spearman's $\rho(\uparrow)$										
TAPE datasets/perfe	ormances	taken from	m Rao et al. (2	019).						
Model Source Boman Fluorescence Stat										
k-NN	Baseline	0.93	0.59	0.21						
One-Hot	TAPE	-	0.14	0.19						
Pretr. LSTM	TAPE	_	0.67	0.69						
Pretr. Transformer	TAPE	_	0.68	0.73						
Alley et al. (2019)	UniRep	_	0.67	0.73						
RT	Ours	0.99	$0.72_{\pm 0.04}$	$0.71_{\pm 0.02}$						

• RT can match state-of-the art protein language models in protein property prediction (TAPE: Rao et al., NeurIPS 2019; UniRep : Alley et al., Nature Methods 2019)

Protein design

• Dataset: Fluorescence & stability dataset are from TAPE benchmark

Model	Boman	dataset	Stabilit	y dataset
Model	0-Var (↓)	Spearm. ρ	0-Var (↓)	Spearm. ρ
All TAPE	Task un	feasible	Task ur	ıfeasible
RT	$0.2\%_{\pm0.0}$	$0.84_{\pm0.00}$	$19\%_{\pm 4.5}$	$0.44_{\pm 0.01}$
	•		•	

Same model can, to a decent extent, adapt existing proteins to fulfil a property of interest

Motivation III: Self-supervised pretraining

How to extend self-supervised pretraining (BERT-style) to numerically labelled data?

Regression Transformer (RT)

- Idea: Relax the inductive bias of discriminative modelling
- Let's learn joint distributions over input and target variables
- \rightarrow Blur lines between predictive and conditional generative modeling

IBM **Research** Europe ³²

Protein design II

 More freedom (i.e., masked tokens) in the protein design task leads to better results

 But this comes at the cost of lower diversity

Property prediction results

Configurati	ion		l. I	Dataset	
Model	NE	lpha	ESOL	FreeSolv	Lipo.
RF	-	—	$+1.16\pm_{0.15}$	$2.12 \pm_{0.68}$	$0.78 \pm_{0.02}$
XGBoost	—	—	$1.05\pm_{0.10}$	$1.76 \pm_{0.21}$	$0.84 \pm_{0.03}$
MPNN	_	_	$0.55\pm_{0.02}$	$1.20\pm_{0.02}$	$0.76 \pm_{0.03}$
SMILES-BERT			$10.47\pm_{0.05}$	0.81 ± 0.09	
Mol-BERT	_	-	$0.53\pm_{0.04}$	$0.95\pm_{0.33}$	$0.56 \pm_{0.03}$
$\overline{\mathbf{RT}}$ (ours)	~ X	$\overline{0}$	$0.76\pm_{0.05}$	1.19 ± 0.29	$0.76\pm_{0.03}$
RT (ours)	X	1	$0.75 \pm_{0.04}$	$1.32 \pm_{0.39}$	$0.76 \pm_{0.03}$
RT (ours)	1	0	0.71 ± 0.04	$1.40 \pm_{0.47}$	$0.74 \pm_{0.05}$
RT (ours)	1	1	$0.73 \pm_{0.04}$	$1.34 \pm_{0.29}$	$0.74 \pm_{0.03}$

Metric: RMSE (↓)

• The RT cannot match Transformers finetuned with a regression head, but....

Accelerated Discovery Team / March 2022 / © 2022 IBM Corporation

- 1. Motivations for the Regression Transformer (RT)
- 2. How does the RT work?
- 3. Experiments on chemical languages
- 4. Experiments on protein languages

Motivation for Regression Transformer

1. Entangle molecular design & property prediction in generative chemistry

2. Decline of inductive biases in ML

3. Extend self-supervised pretraining to continuous properties

Color palette

Black RO GO BO #000000	Gray 100 R22 G22 B22 #161616 Blue 100 R0 G17 B65 #001141	Gray 90 R38 G38 B38 #262626 Blue 90 R0 G29 B108 #001d6c	Gray 80 R57 G57 B57 #393939 Blue 80 R0 G45 B156 #002d9c	Gray 70 R82 G82 B82 #525252 Blue 70 R0 G67 B206 #0043ce	Gray 60 R111 G111 G111 #6f6f6f Blue 60 R15 G98 B254 #0f62fe	Gray 50 R141 G141 B141 #8d8d8d Cyan 50 R17 G146 B232 #1192e8	Gray 40 R168 G168 B168 #a8a8a8 Cyan 40 R51 G177 B255 #33b1ff	Gray 30 R198 G199 B198 #c6c6c6 Cyan 30 R130 G207 B255 #82cfff		
	Red 50 R250 G77 B86 #fa4d56	Red 40 R255 G131 B137 #ff8389	Red 30 R255 G179 B184 #ffb3b8	Red 20 R255 G215 B217 #ffd7d9	Red 10 R256 (2241 B241 R1111	Purple 50 R165 G110 B255 #a56eff	Purple 40 R190 G149 B255 #be95ff	Purple 30 R212 G187 B255 #d4bbff		
	Green 30 R111 G220 B140 #6fdc8c	Green 20 R167 G240 B186 #a7f0ba	Green 10 R222 G251 B230 #defbe6			Teal 50 R0 G157 B154 #009d9a	Teal 40 R8 G189 B186 #08bdba	Teal 30 R61 G219 B217 #3ddbd9	Teal 20 R158 G240 B240 #9ef0f0	