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connected devices: pervasive or invasive?

• Connected devices are spreading rapidly and collect increasingly personal data
• Ex: browsing logs, health, speech, accelerometer, geolocation...

• Opportunity to provide personalized services but also a potential threat to privacy

• A first step to try and reconcile the two: keep and process data on the user device
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ai & ml on the edge: two settings of interest

• Most of previous talks: Inference on the edge
• Pre-trained ML model pushed to user devices
• Challenge: perform efficient and accurate on-device predictions

• This talk: Training on the edge
• Train ML model on the data of many devices
• Challenge: design training algorithms that scale to large number of devices
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federated vs fully decentralized training

Standard federated learning

• Coordination by a central server

• Single point of failure, server may
become a bottleneck

Fully decentralized learning

• Device-to-device communication in a
sparse network graph

• Naturally scales to many devices

See [Kairouz et al., 2019] for a detailed overview of federated/decentralized ML
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global model vs personalized models

Global model

• One-size-fits-all: same model makes
predictions for all devices

• Model should be trained on data from
all users

• Large model may be needed to capture
the specificities of each user

Personalized models

• One model per device

bla
blablbalbalablab

• Model should be trained on data from
that user and from similar users

• Smaller models may be sufficient
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our approach

We propose to learn personalized models in a fully decentralized setting:

• Learn “who to communicate with” by inferring a graph of similarities between users

• Collaboratively learn personalized models over this graph

• Optimize the models and the graph jointly, in an alternating fashion
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problem formulation



users and local datasets

• A set of n users (devices) with common feature space X and label space Y

• User i has local training dataset Si = {(xji, y
j
i)}

mi
j=1 of size mi ≥ 0 and wants to learn a

model θi ∈ Rp which generalizes well to future local data

• In isolation, user i can learn a purely local model by minimizing a local loss Li(θ;Si)
(with Lloci -Lipschitz continuous gradient)

• This will generalize poorly when local data is scarce→ need to collaborate
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decentralized setting

• Asynchronous time model: each user becomes active at random times,
asynchronously and in parallel (we use global counter t to denote the t-th activation)

• Communication model: all users can exchange messages, but we want to restrict
communication to pairs of most similar users

• We model this by a collaboration graph: a weighted graph with edge weight wij ≥ 0
reflecting similarity between the learning tasks of users i and j
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joint optimization problem

• Learn personalized models Θ ∈ Rn×p and graph weights w ∈ Rn(n−1)/2
≥0 as solutions to

min
Θ∈Rn×p

w∈Rn(n−1)/2
≥0

J(Θ,w) =
n∑
i=1

diciLi(θi;Si) +
µ

2
∑
i<j

wij∥θi − θj∥2 + λg(w),

• Trade-off between accurate models on local data and smooth models over the graph

• ci ∈ (0, 1] ∝ mi: confidence of user i, di =
∑

j̸=i wij: degree of i

• Term g(w): avoid trivial collaboration graph, encourage sparsity

• Flexible relationships: hyperparameter µ ≥ 0 interpolates between learning purely
local models and a shared model per connected component
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outline of the proposed algorithm

We design an alternating optimization procedure over Θ and w:

1. A decentralized algorithm to learn the models given the graph

2. A decentralized algorithm to learn a graph given the models
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learning models given the graph



decentralized algorithm

• Denote neighborhood of user i by Ni = {j : wij > 0}

• Initialize models Θ(0) ∈ Rn×p

• At step t ≥ 0, a random user i becomes active:
1. user i updates its model based on its local dataset Si and the information from neighbors:

θi(t+ 1) = θi(t)−
1

µ+ ciLloci

(
ci∇Li(θi(t);Si)− µ

∑
j∈Ni

wij
di

θj(t)
)

2. user i sends its updated model θi(t+ 1) to its neighborhood Ni

• The update is a combination of a local gradient step and a weighted average of
neighbors’ models
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convergence rate

Proposition ([Bellet et al., 2018])

For any T > 0, let (Θ(t))Tt=1 be the sequence of iterates generated by the algorithm run-
ning for T iterations from an initial point Θ(0). When the local losses Li are strongly
convex, we have:

E [f(Θ(T))− f⋆] ≤
(
1− σ

nLmax

)T
(f(Θ(0))− f∗) .

where Lmax = maxi Li and σ are smoothness and strong convexity parameters.

• Optimality gap decreases exponentially fast with T
• Constant number of per-user updates→ optimality gap roughly constant in n
• Note: can prove O(1/T) convergence for the standard convex case
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learning the graph given models



regularization of the graph

min
Θ∈Rn×p

w∈Rn(n−1)/2
≥0

J(Θ,w) =
n∑
i=1

diciLi(θi;Si) +
µ

2
∑
i<j

wij∥θi − θj∥2 + λg(w)

• Our algorithm can deal with a large family of functions g

• Inspired by [Kalofolias, 2016], we can define

g(w) = β∥w∥2 − 1T log(d+ δ) (with δ small constant)

• Log barrier on the degree vector d to avoid isolated users and L2 penalty on weights
to control the graph sparsity

• The resulting objective h in w is strongly convex
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decentralized algorithm

• We rely on decentralized peer sampling [Jelasity et al., 2007] to allow users to
communicate with a set of κ random peers

• Initialize weights w(0), choose parameter κ ∈ {1, . . . ,n− 1}

• At each step t ≥ 0, a random user i becomes active:
1. Draw a set K of κ users and request their model, loss and degree
2. Update the associated weights w(t+ 1)i,K via a gradient update
3. Send each updated weight w(t+ 1)ij to the associated user j ∈ K
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convergence rate

Theorem ([Zantedeschi et al., 2020])

For any T > 0, let (w(t))Tt=1 be the sequence of iterates generated by the algorithm running
for T iterations from an initial point w(0). We have:

E[h(w(T))− h∗] ≤ ρT(h(w(0))− h∗), where ρ = 1− 4
n(n− 1)

κβδ2

κ+ 1+ 2βδ2

• κ can be used to trade-off between communication cost and convergence speed
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extensions (not covered in this talk)

• Low-communication updates via greedy boosting [Zantedeschi et al., 2020]

• Algorithm with formal differential privacy guarantees [Bellet et al., 2018]
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numerical experiments



experiments: synthetic data

• We approximately recover the ground-truth cluster structure

• Prediction accuracy is close to that of the oracle graph
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experiments: real datasets

• Real datasets that are naturally collected at the user/device level

• Number of users n from 23 to 190, no task similarity available

• Linear models and nonlinear ensembles

• Our approach clearly outperforms both global and purely local models

Dataset Global-lin Local-lin Ours-lin Global-nonlin Local-nonlin Ours-nonlin

Harws 93.64 92.69 96.31 94.34 93.16 95.70
Vehicle 87.11 90.38 91.37 88.02 90.59 90.81
Computer 62.18 60.68 69.08 69.16 66.61 72.09
School 57.06 70.43 71.92 69.16 66.61 72.22

bold blue = best, regular blue = second best
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Thank you for your attention!
Questions?
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experiments: synthetic data with differential privacy

• Here we use the oracle graph
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