FULLY DECENTRALIZED JOINT LEARNING OF PERSONALIZED MODELS AND COLLABORATION GRAPHS

Aurélien Bellet (Inria)

Includes work with: M. Tommasi, P. Vanhaesebrouck (University of Lille & Inria) R. Guerraoui, M. Taziki (EPFL) V. Zantedeschi (University of Saint-Etienne)

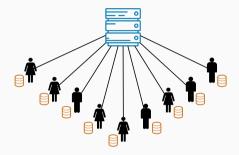
Applied Machine Learning Days 2020 — Al & ML on the Edge EPFL, January 27, 2020

- · Connected devices are spreading rapidly and collect increasingly personal data
 - Ex: browsing logs, health, speech, accelerometer, geolocation...
- Opportunity to provide personalized services but also a potential threat to privacy
- A first step to try and reconcile the two: keep and process data on the user device

- Most of previous talks: Inference on the edge
 - Pre-trained ML model pushed to user devices
 - · Challenge: perform efficient and accurate on-device predictions
- This talk: Training on the edge
 - Train ML model on the data of many devices
 - Challenge: design training algorithms that scale to large number of devices

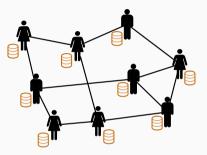
FEDERATED VS FULLY DECENTRALIZED TRAINING

Standard federated learning



- Coordination by a central server
- Single point of failure, server may become a bottleneck

Fully decentralized learning



- Device-to-device communication in a sparse network graph
- Naturally scales to many devices

See [Kairouz et al., 2019] for a detailed overview of federated/decentralized ML

Global model

- One-size-fits-all: same model makes predictions for all devices
- Model should be trained on data from all users
- Large model may be needed to capture the specificities of each user

Personalized models

- One model per device
- Model should be trained on data from that user and from similar users
- Smaller models may be sufficient

We propose to learn personalized models in a fully decentralized setting:

- Learn "who to communicate with" by inferring a graph of similarities between users
- Collaboratively learn personalized models over this graph
- Optimize the models and the graph jointly, in an alternating fashion

PROBLEM FORMULATION

- \cdot A set of *n* users (devices) with common feature space $\mathcal X$ and label space $\mathcal Y$
- User *i* has local training dataset $S_i = \{(x_i^j, y_i^j)\}_{j=1}^{m_i}$ of size $m_i \ge 0$ and wants to learn a model $\theta_i \in \mathbb{R}^p$ which generalizes well to future local data
- In isolation, user *i* can learn a purely local model by minimizing a local loss L_i(θ; S_i) (with L^{loc}-Lipschitz continuous gradient)
- $\cdot\,$ This will generalize poorly when local data is scarce \rightarrow need to collaborate

- Asynchronous time model: each user becomes active at random times, asynchronously and in parallel (we use global counter *t* to denote the *t*-th activation)
- **Communication model**: all users can exchange messages, but we want to restrict communication to pairs of most similar users
- We model this by a collaboration graph: a weighted graph with edge weight $w_{ij} \ge 0$ reflecting similarity between the learning tasks of users *i* and *j*

• Learn personalized models $\Theta \in \mathbb{R}^{n \times p}$ and graph weights $w \in \mathbb{R}_{\geq 0}^{n(n-1)/2}$ as solutions to

$$\min_{\substack{\Theta \in \mathbb{R}^{n \times p} \\ w \in \mathbb{R}^{n(n-1)/2}}} J(\Theta, w) = \sum_{i=1}^{n} d_i c_i \mathcal{L}_i(\theta_i; \mathcal{S}_i) + \frac{\mu}{2} \sum_{i < j} w_{ij} \|\theta_i - \theta_j\|^2 + \lambda g(w),$$

- · Trade-off between accurate models on local data and smooth models over the graph
- $c_i \in (0, 1] \propto m_i$: confidence of user $i, d_i = \sum_{j \neq i} w_{ij}$: degree of i
- Term g(w): avoid trivial collaboration graph, encourage sparsity
- Flexible relationships: hyperparameter $\mu \ge 0$ interpolates between learning purely local models and a shared model per connected component

We design an alternating optimization procedure over Θ and *w*:

- 1. A decentralized algorithm to learn the models given the graph
- 2. A decentralized algorithm to learn a graph given the models

LEARNING MODELS GIVEN THE GRAPH

DECENTRALIZED ALGORITHM

- Denote neighborhood of user *i* by $N_i = \{j : w_{ij} > 0\}$
- Initialize models $\Theta(0) \in \mathbb{R}^{n \times p}$
- At step $t \ge 0$, a random user *i* becomes active:

1. user *i* updates its model based on its local dataset S_i and the information from neighbors:

$$\theta_i(t+1) = \theta_i(t) - \frac{1}{\mu + c_i L_i^{loc}} \left(c_i \nabla \mathcal{L}_i(\theta_i(t); \mathcal{S}_i) - \mu \sum_{j \in N_i} \frac{W_{ij}}{d_i} \theta_j(t) \right)$$

2. user *i* sends its updated model $\theta_i(t + 1)$ to its neighborhood N_i

• The update is a combination of a local gradient step and a weighted average of neighbors' models

Proposition ([Bellet et al., 2018])

For any T > 0, let $(\Theta(t))_{t=1}^{T}$ be the sequence of iterates generated by the algorithm running for T iterations from an initial point $\Theta(0)$. When the local losses \mathcal{L}_i are strongly convex, we have:

$$\mathbb{E}\left[f(\Theta(T))-f^*\right] \leq \left(1-\frac{\sigma}{nL_{max}}\right)^T \left(f(\Theta(0))-f^*\right).$$

where $L_{max} = \max_i L_i$ and σ are smoothness and strong convexity parameters.

- Optimality gap decreases exponentially fast with T
- · Constant number of per-user updates ightarrow optimality gap roughly constant in n
- Note: can prove O(1/T) convergence for the standard convex case

LEARNING THE GRAPH GIVEN MODELS

$$\min_{\substack{\Theta \in \mathbb{R}^{n \times p} \\ w \in \mathbb{R}^{n(n-1)/2}}} J(\Theta, w) = \sum_{i=1}^{n} d_i c_i \mathcal{L}_i(\theta_i; \mathcal{S}_i) + \frac{\mu}{2} \sum_{i < j} w_{ij} \|\theta_i - \theta_j\|^2 + \lambda g(w)$$

- \cdot Our algorithm can deal with a large family of functions g
- Inspired by [Kalofolias, 2016], we can define

 $g(w) = \beta ||w||^2 - 1^T \log(d + \delta)$ (with δ small constant)

- Log barrier on the degree vector d to avoid isolated users and L_2 penalty on weights to control the graph sparsity
- The resulting objective *h* in *w* is strongly convex

- We rely on decentralized peer sampling [Jelasity et al., 2007] to allow users to communicate with a set of κ random peers
- Initialize weights w(0), choose parameter $\kappa \in \{1, \ldots, n-1\}$
- At each step $t \ge 0$, a random user *i* becomes active:
 - 1. Draw a set ${\cal K}$ of κ users and request their model, loss and degree
 - 2. Update the associated weights $w(t + 1)_{i,K}$ via a gradient update
 - 3. Send each updated weight $w(t + 1)_{ii}$ to the associated user $j \in \mathcal{K}$

Theorem ([Zantedeschi et al., 2020])

For any T > 0, let $(w(t))_{t=1}^{T}$ be the sequence of iterates generated by the algorithm running for T iterations from an initial point w(0). We have:

$$\mathbb{E}[h(w^{(T)}) - h^*] \le \rho^{\mathsf{T}}(h(w^{(0)}) - h^*), \quad \text{where } \rho = 1 - \frac{4}{n(n-1)} \frac{\kappa \beta \delta^2}{\kappa + 1 + 2\beta \delta^2}$$

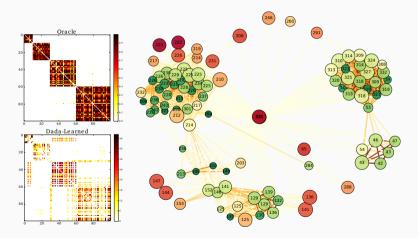
+ κ can be used to trade-off between communication cost and convergence speed

- Low-communication updates via greedy boosting [Zantedeschi et al., 2020]
- Algorithm with formal differential privacy guarantees [Bellet et al., 2018]

NUMERICAL EXPERIMENTS

EXPERIMENTS: SYNTHETIC DATA

- We approximately recover the ground-truth cluster structure
- Prediction accuracy is close to that of the oracle graph



EXPERIMENTS: REAL DATASETS

- Real datasets that are naturally collected at the user/device level
- Number of users *n* from 23 to 190, no task similarity available
- Linear models and nonlinear ensembles
- Our approach clearly outperforms both global and purely local models

Dataset	Global-lin	Local-lin	Ours-lin	Global-nonlin	Local-nonlin	Ours-nonlin
Harws	93.64	92.69	96.31	94.34	93.16	95.70
Vehicle	87.11	90.38	91.37	88.02	90.59	90.81
Computer	62.18	60.68	69.08	69.16	66.61	72.09
School	57.06	70.43	71.92	69.16	66.61	72.22
hold blue - best regular blue - second best						

bold blue = best, regular blue = second best

THANK YOU FOR YOUR ATTENTION! QUESTIONS?

```
[Bellet et al., 2018] Bellet, A., Guerraoui, R., Taziki, M., and Tommasi, M. (2018).

Personalized and Private Peer-to-Peer Machine Learning.
```

[Jelasity et al., 2007] Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., and van Steen, M. (2007). Gossip-based peer sampling.

ACM Trans. Comput. Syst., 25(3).

[Kairouz et al., 2019] Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., D'Oliveira, R. G. L., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B., Gibbons, P. B., Gruteser, M., Harchaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konečný, J., Korolova, A., Koushanfar, F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh, R., Raykova, M., Qi, H., Ramage, D., Raskar, R., Song, D., Song, W., Stich, S. U., Sun, Z., Suresh, A. T., Tramèr, F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu, H., and Zhao, S. (2019).

Advances and Open Problems in Federated Learning.

Technical report, arXiv:1912.04977.

[Kalofolias, 2016] Kalofolias, V. (2016). How to learn a graph from smooth signals. In AISTATS.

REFERENCES II

[Vanhaesebrouck et al., 2017] Vanhaesebrouck, P., Bellet, A., and Tommasi, M. (2017). Decentralized Collaborative Learning of Personalized Models over Networks. In *AISTATS*.

[Zantedeschi et al., 2020] Zantedeschi, V., Bellet, A., and Tommasi, M. (2020). **Fully decentralized joint learning of personalized models and collaboration graphs.** In *AISTATS*.

EXPERIMENTS: SYNTHETIC DATA WITH DIFFERENTIAL PRIVACY

• Here we use the oracle graph

