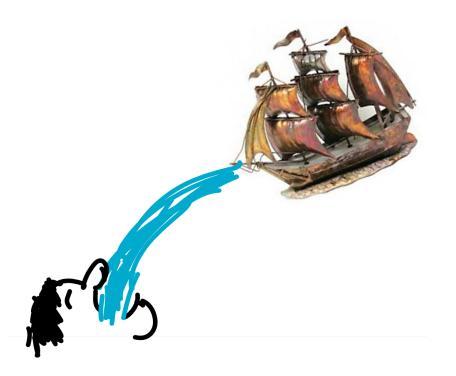
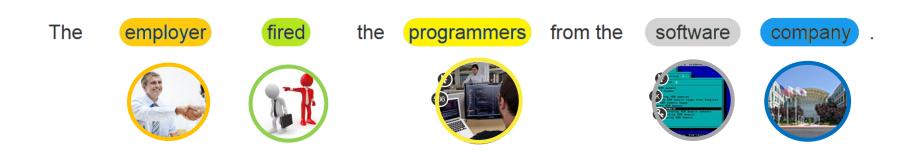
How to enable Natural Language Understanding in many languages Roberto Navigli

> Dipartimento di Informatica

Joint work with...


- Simone Conia
- Andrea Di Fabio
- Caterina Lacerra
- Federico Martelli
- Marco Maru
- Tommaso Pasini
- Bianca Scarlini
- Federico Scozzafava

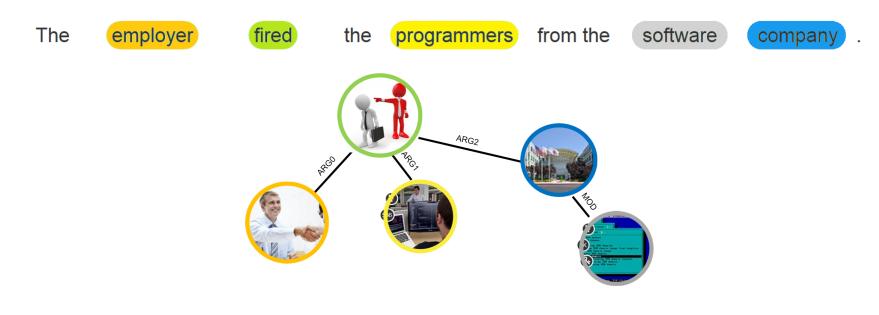
How to enable Natural Language Understanding in many languages Roberto Navigli 10/02/20


Machine Translation «does not understand»

- **EN** Is it healthy to drink from a copper vessel?
- **IT** È salutare bere da una nave di **rame**?
- **EN** Is it healthy to drink from a **copper** ship?


3 tasks to enable Natural Language Understanding at the semantic level

- Word Sense Disambiguation
 - Associating meanings with words occurring in context


3 tasks to enable Natural Language Understanding at the semantic level

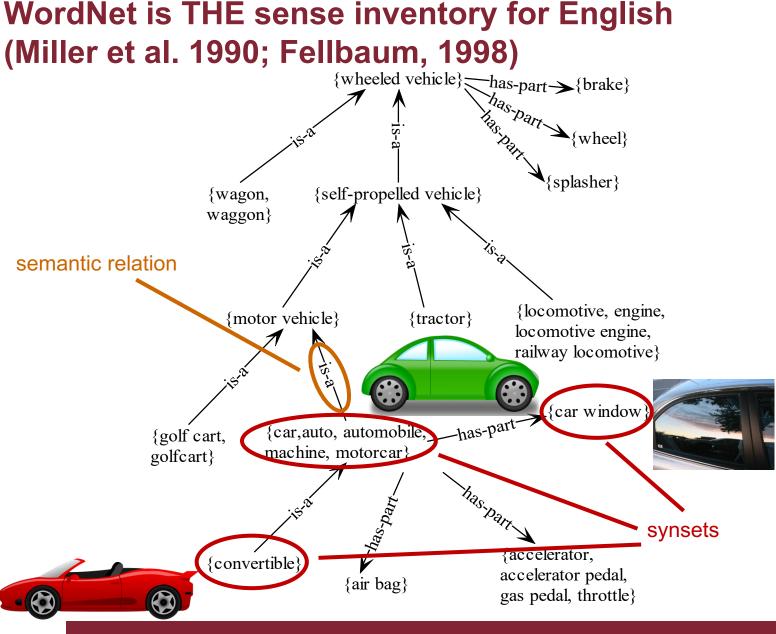
- Word Sense Disambiguation
- Semantic Role Labeling
 - «Shallow semantic parsing» which performs predicateargument annotations

3 tasks to enable Natural Language Understanding at the semantic level

- Word Sense Disambiguation
- Semantic Role Labeling
- Semantic Parsing
 - Transforming the text into a structured semantic representation

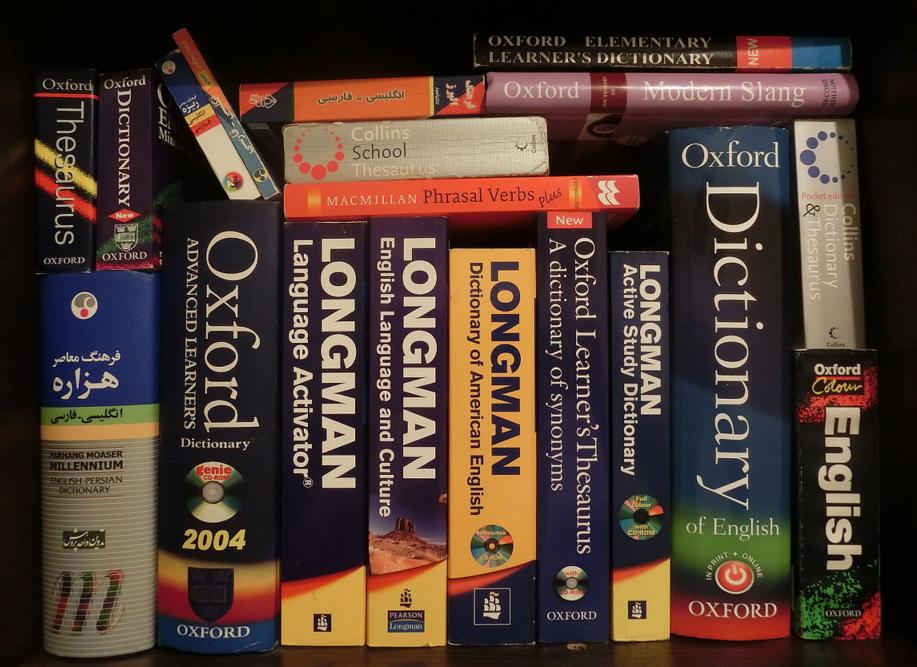
A Key Goal of AI – Multilingual Machine Reading

- Why? Machines could potentially "read" the entire Web
- Answer all kinds of questions, summarize, translate, etc.


Key question: deriving meaning from natural language by overcoming its inherent complexities

How to enable Natural Language Understanding in many languages Roberto Navigli

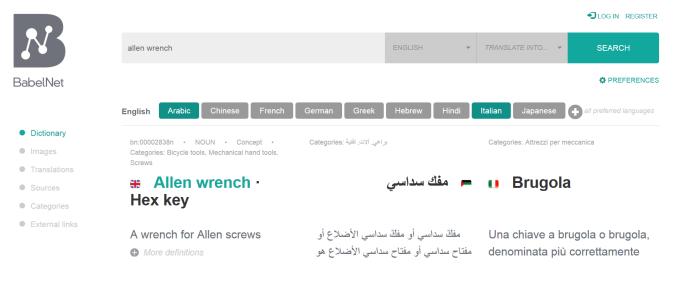
Word Sense Disambiguation



How to enable Natural Language Understanding in many languages Roberto Navigli

How to enable Natural Language Understanding in many languages Roberto Navigli 10/02/20

The resource diaspora


Word senses: which sense inventory to scale multilingually?

 BabelNet (Navigli and Ponzetto, ACL 2010; AIJ 2012): a merger of WordNet, multilingual wordnets, Wikipedia, Wikidata, Wiktionary and many other resources

Word senses: which sense inventory to scale multilingually?

 BabelNet (Navigli and Ponzetto, ACL 2010; AIJ 2012): a merger of WordNet, multilingual wordnets, Wikipedia, Wikidata, Wiktionary and many other resources

Verb

run	هَرْوَلَ, جَرَى, رَكَّضَ 💻
Move fast by using one's feet, with one foot off the ground at any given time	 奔跑, 跑
	Courir
	r ennen
	🔚 τρέχω, κινούμαι
	בץ 📼

correre

Why do we need BabelNet?

- Multilinguality: the same concept is expressed in tens of languages
- Coverage: 284 languages and 16 million entries!
- Concepts and named entities together: dictionary and encyclopedic knowledge is semantically interconnected

Two ERC projects aimed at automatic text understanding

MOUSSE: ERC Consolidator Grant (2017-2022)

The current limits of Word Sense Disambiguation

- Lack of high-quality knowledge
 - Limited to WordNet, BabelNet, etc.
- Limited to one language
 - English, English, English?
- Fine granularity of the sense inventory
 - WordNet, WordNet, WordNet

The current limits of Word Sense Disambiguation

- Lack of high-quality knowledge (Maru et al., EMNLP 2019)
 Limited to WordNet, BabelNet, etc.
- Limited to one language
 - English, English, English?
- Fine granularity of the sense inventory
 - WordNet, WordNet, WordNet

What is missing in WordNet and BabelNet?

- WordNet is manually curated, but contains mostly paradigmatic relations (e.g. convertible –is-a-> car)
- BabelNet is very rich, but contains a huge number of unclassified relations (e.g. ERC -> Brussels, screen -> pixel)
- To disambiguate, we need syntagmatic relations
 - open -> door
 - open -> business
 - play -> piano
 - play -> act
 - play -> game
 - door -> window

How to enable Natural Language Understanding in many languages Roberto Navigli

but they need to be

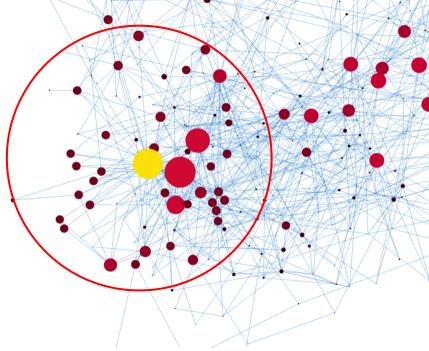
associated with the

right meanings!

10/02/20

17

SyntagNet: addressing the lack of syntagmatic knowledge (Maru et al., EMNLP 2019)


 We extracted cooccurrences of nouns and verbs on a large scale from Wikipedia and the British National Corpus

$$score(w_1, w_2) = log_2(1 + n_{w_1w_2}) \frac{2n_{w_1w_2}}{n_{w_1} + n_{w_2}}$$

- We disambiguated the cooccurrences with our state-of-theart WSD system
 - Babelfy (Moro et al., TACL 2014)
- We validated the top-ranking cooccurrences manually
- Minimum agreement between 3 annotators: κ = 0.71 (substantial agreement)
 - Disagreement instances are valid alternative tags, not factual errors

Knowledge-based WSD

- Personalized PageRank can be used to perform disambiguation of an ambiguous word in context
- The probability of a word sense depends on its direct and indirect interconnections to other senses of words in context
- The quality of disambiguation depends on the underlying semantic network which connects meanings

Comparison between different Lexical Knowledge Bases

		English					
resource	#relations	Sens2	Sens3	Sem07	Sem13	Sem15	All
WNG (WordNet+PWNG)	671,779	69.2	65.9	54.9	66.8	70.7	67.1
WNG+KnowNet20	520,682	67.2	65.8	53.8	67.3	71.5	66.6
WNG+deepKnowNet95d	522,880	66.9	64.9	53.6	66.9	71.6	66.2
WNG+BabelNet 4.0	9,447,341	67.5	64.1	53.0	67.6	66.9	65.6
WNG+eXtended WordNet	551,551	67.7	65.7	52.3	67.6	71.0	66.7
WNG+ColWordNet	8,424	69.2	65.9	54.1	66.7	70.7	67.1
WNG+SyntagNet	88,019	71.2	<u>71.6</u>	59.6	<u>72.4</u>	75.6	<u>71.5</u>

Underlined results show statistically significant differences from the baseline (χ^2 test, p < 0.05)

Comparison with the state of the art in WSD

system	Sens2	Sens3	Sem07	Sem13	Sem15	All
LSTMLP•	73.8	71.8	63.5	69.5	72.6	71.5
$IMSC2V_{+PR}\infty$	73.8	71.9	63.3	<u>68.2</u>	72.8	71.2
fastSense∆	73.5	73.5	62.4	66.2	73.2	71.1
UKB+SyntagNet	71.2	71.6	59.6	72.4	75.6	71.5

- Yuan et al., 2016
- † Raganato et al. (2017b)
- ★ Gutiérrez Vázquez et al. (2010)
- ◊ best SUDOKU-RUNk (Manion, 2015)
- Pasini and Navigli (2017)
- ‡ result obtained by aggregating the outputs of the best systems across languages

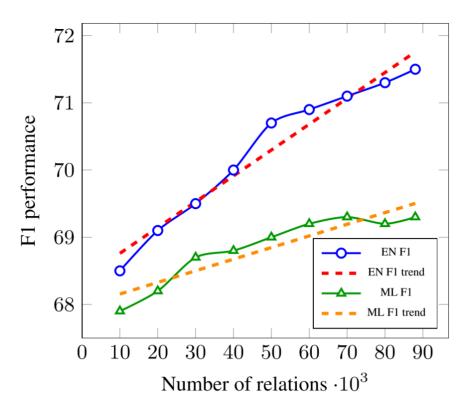
Underlined results show statistically significant differences results (χ^2 test, p < 0.05)

How to enable Natural Language Understanding in many languages Roberto Navigli 10/02/20

 ∞ Melacci et al. (2018)

<u>fror</u>

Syntagmatic


relations rival (and

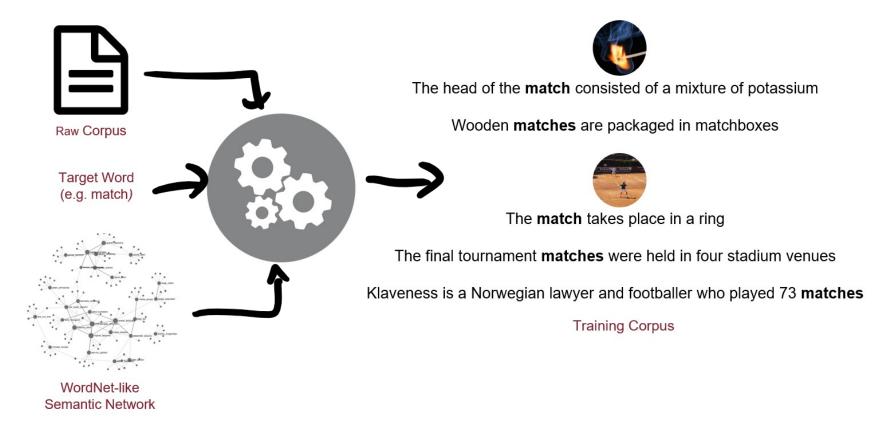
surpass) neural

supervised WSD!

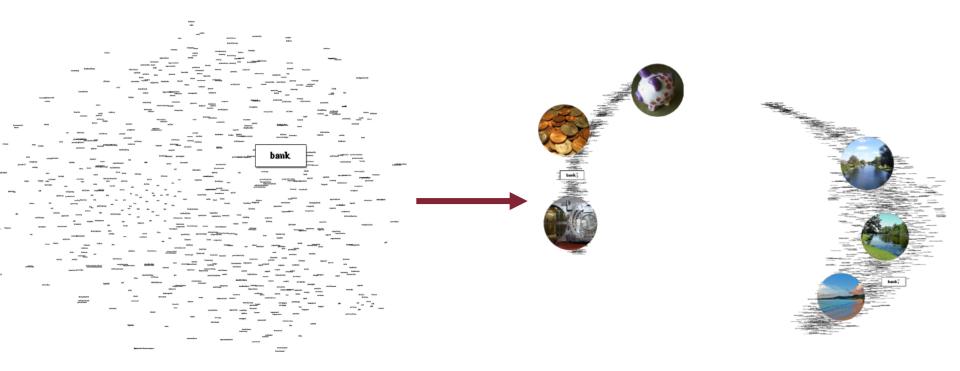
 \triangle Uslu et al. (2018)

We are far from reaching a plateau!

- More relation edges are expected to provide further performance increase
- English growth steeper because of cleaner sense inventory


The current limits of Word Sense Disambiguation

- Lack of high-quality knowledge
 Limited to WordNet, BabelNet, etc.
- Limited to one language (Scarlini et al., AAAI 2020)
 English, English, English
- Fine granularity of the sense inventory
 - WordNet, WordNet, WordNet



Addressing the lack of sense-annotated data

Goal: overcome the knowledge acquisition bottleneck
 i.e. acquire large training datasets for supervised WSD

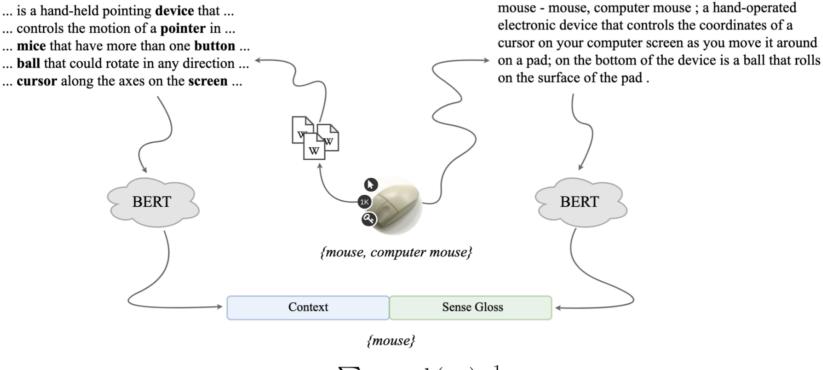
Solution: move from lexical to semantic

Word vector space model

Sense vector space model

How to enable Natural Language Understanding in many languages Roberto Navigli 10/02/20

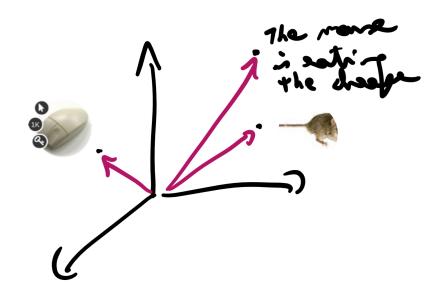
Solution: distinct representation for each word's meaning


How to enable Natural Language Understanding in many languages Roberto Navigli

Sense representations out of contextualized embeddings (AAAI 2020, SensEmBERT)

Wikipedia

BabelNet



$$v_s = \frac{\sum_{w_i \in W_s} rank(w_i)^{-1} v_{w_i}}{\sum_{w_i \in W_s} rank(w_i)^{-1}}$$

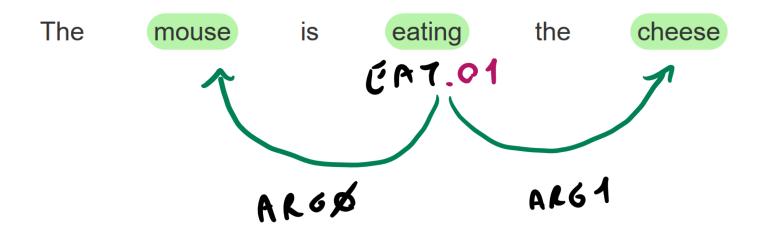
How to enable Natural Language Understanding in many languages Roberto Navigli 10/02/20

How to perform Word Sense Disambiguation?

- Very, very simple: 1-nearest neighbour!
- For a given sentence, e.g. The mouse is eating the cheese, compare the representations of the meanings of mouse with the context vector representation:

How to enable Natural Language Understanding in many languages Roberto Navigli 10/02/20

Knowledge-based+Neural achieves 80% accuracy in Word Sense Disambiguation!


	Model	Senseval-2	Senseval-3	SemEval-07	SemEval-13	SemEval-15	ALL
KB	MFS Lesk _{ext} +emb (2014) UKB _{gloss} (2014) Babelfy (2014)	72.1 74.6 70.6 74.0	72.0 72.7 58.4 66.7	65.4 66.0 56.6 61.0	63.0 66.2 59.0 66.4	66.3 67.8 62.3 69.9	67.6 69.8 62.1 68.6
Sup	IMS+emb (2016) Bi-LSTM (2017) HCAN (2018a) EWISE $_{ConvE}$ (2019)	79.0 78.6 78.3	74.6 72.7 73.2	71.1 71.1 70.9	65.9 66.4 68.5 69.4	72.1 73.3 73.8	71.9 71.6 72.6 74.0
Sup _{context}	context2vec (2016) LSTM-LP (2016) BERT k-NN (2019) BERT k-NN + MFS (2019) LMMS (2019)	78.0 79.6 71.7 81.4 82.6	73.1 76.3 73.0 76.3 77.8	66.7 71.7 72.9 73.6 76.7	65.6 69.5 65.6 71.8 75.4	71.6 72.8 68.4 74.0 76.6	71.0 69.3 75.5 77.9
Ours	SENSEMBERT SENSEMBERT $_{sup}$	79.9 84.0	70.0 80.8	74.2 80.5	75.0 78.5	79.7 79.5	75.7 80.5

The current limits of Word Sense Disambiguation

- Lack of high-quality knowledge
 Limited to WordNet, BabelNet, etc.
- Lack of sense-annotated data

 Limited to SemCor, MASC, Senseval, SemEval, not much more
- Fine granularity of the sense inventory (Lacerra et al., AAAI 2020)
 - WordNet, WordNet, WordNet
 - No time in this overview talk, sorry!

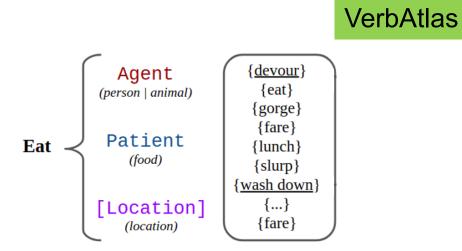
Dependency-based Semantic Role Labeling

Roleset id: eat.01

Roles:

Arg0-PAG: *consumer*, *eater* (vnrole: 39.1-1-agent) Arg1-PPT: *meal* (vnrole: 39.1-1-patient)

What are the issues with the current frame inventories?


	Cluster type	#	Argument roles	#	Meaning units	#
FrameNet	Frames	1,224	Frame elements	10,542	Lexical units	5,200
VerbNet	Levin's classes	329	Thematic roles	39	Senses	6,791
PropBank	Verbs	5,649	Proto-roles	6	Framesets	10,687
WordNet	-	-	-	-	Synsets	13,767

- Low coverage of verbal meanings (FrameNet, VerbNet)
- Low coverage of verbs (all resources, compared to 11.5k distinct verbs in WordNet)
- Unintelligibile argument roles (ARG0, ARG1, PropBank)
- Syntactic organization of verbs (VerbNet)
- Language (English!) specificity (all resources)

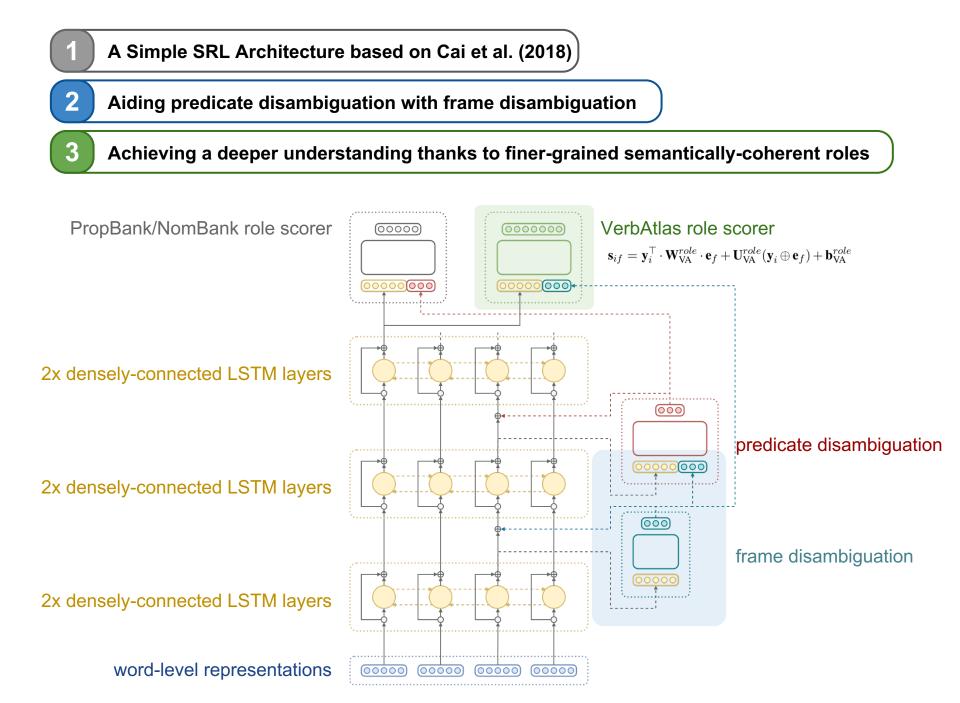
VerbAtlas: a new resource for SRL and Semantic Parsing (Di Fabio et al., EMNLP 2019)

- A manually-crafted inventory of verbs and argument structures with:
 - 1. full coverage of the verbal lexicon
 - 2. prototypical argument structures for each cluster of synsets that define a semantically-coherent frame
 - 3. explicit, cross-domain semantic roles
 - 4. refined semantic information and selectional preferences for the frame argument structure
 - 5. scalability: linkage to WordNet and, as a result, to BabelNet
 - 6. reusability: full mapping to PropBank framesets
 - effectiveness: ability to improve over PropBank on the CoNLL-2009 dataset

VerbAtlas vs. PropBank

PropBank

Roleset id: eat.01


Roles:

Roleset id: wash_down.04,

Roles:

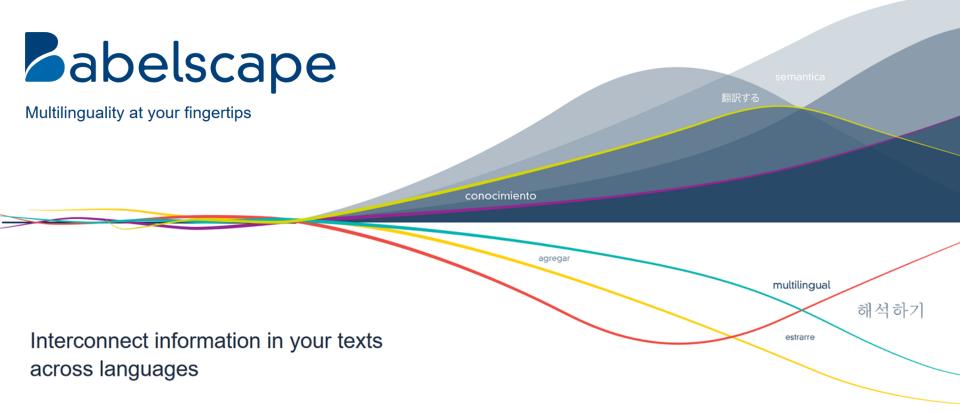
Arg0-PAG: *consumer*, *eater* (vnrole: 39.1-1-agent) Arg1-PPT: *meal* (vnrole: 39.1-1-patient) Arg0-PAG: Agent of swallowing Arg1-PPT: Thing being swallowed Arg2-MNR: Liquid enabling swallowing

How to enable Natural Language Understanding in many languages Roberto Navigli

Results on the CoNLL-2009 dataset

In-domain

Syntax-aware system	Р	R	F_1
Roth and Lapata (2016)	88.1	85.3	86.7
Marcheggiani and Titov (2017)	89.1	86.8	88.0
He et al. (2018)	89.7	89.3	89.5
Li et al. (2018)	90.3	89.3	89.8
Syntax-agnostic system	Р	R	F_1
Marcheggiani et al. (2017)	88.7	86.8	87.7
He et al. (2018)	89.5	87.9	88.7
Cai et al. (2018)	89.9	89.2	89.6
This work	90.5	89.5	90.0


Out-of-domain

F_1	Syntax-agnostic system	Р	R	F_1
6.7	Marcheggiani et al. (2017)	79.4	76.2	77.7
8.0	He et al. (2018)	81.7	76.1	78.8
9.5	Cai et al. (2018)	79.8	78.3	79.0
9.8	This work	81.1	78.4	79. 7

 VerbAtlas adds important information already within the domain, and provides robustness across domains

Babelscape: the future of BabelNet and related technologies

- We created a Sapienza spinoff, Babelscape, with the key objective of making BabelNet and related technologies sustainable
- Income is reinvested in BabelNet and subsequent projects
- Working for EUIPO and big companies

Demos

• Let's now look at demos of our technologies

Conclusions

- Natural Language Understanding is hampered by the lack of knowledge, annotated data and suitable resources
 - Especially if we want to go multilingual or scale across domains
- We presented approaches to relieve the knowledge acquisition bottleneck
 - take the tasks of disambiguation and semantic role labeling beyond the current state of the art
 - make the systems and their outputs more understandable, explainable and scalable
- All of the approaches can scale across languages thanks to BabelNet

Thanks or...

ERC MOUSSE Consolidator Grant, contract no. 726487

How to enable Natural Language Understanding in many languages Roberto Navigli 10/02/20

Roberto Navigli

Linguistic Computing Laboratory http://lcl.uniroma1.it @RNavigli

