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“How much do you trust your data pipeline?”
“How reproducible is your result?”

Predictions
Conclusions
Investments

This is your data science pipeline.

?Tiny change!



Predictions
Conclusions
Investments

?

Is this trustworthy?



Reproducibility = Trust

Reproducibility is not a “yes/no” question.

Conjecture: We can measure reproducibility.



Typical scenario that we focus on...

Very few examples, very many features.

Only a subset of features actually influence the phenotype.

Let’s take something specific.
Data-driven biomarker selection



How much do you trust your choices?

Feature Selection
(any method)

x1, x2, x3, x4, x5, x6, x7, …, etc,…, x499, x500

x1, x3, x5, x6, x493

Your
Data Science

Pipeline



Feature Selection

Cross-validate

How much do you trust your choices?

x1, x3, x5, x6, x493

x1, x2, x3, x4, x5, x6, x7, …, etc,…, x499, x500

Your
Data Science

Pipeline



How much do you trust your choices?

x1, x3, x5, x6, x493

x1, x2, x3, x4, x5, x6, x7, …, etc,…, x499, x500

Drop a  random 1% 
of examples

Will not make a difference 
…or will it?

x2 x491“Stability”



“Stability”
A specific instance of reproducibility.

For the task of data-driven biomarker selection.

But… how to measure it?



[ x1, x2, x3, x4, x5, x6 …, x493,…,x499, x500 ]

[ x2, x4, x7, …, x492, x494… x500 ]

Out
[ x1, x3, x5, x6, x493 ]
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Estimating Stability



Estimating Stability

My selected biomarkers.
When using ALL data.

[ x2, x3, x5, x6, x491 ] Small change if I drop a random 1% of data

�(si, sj) = 3

Set intersection? (i.e. features in common)

[ x1, x3, x5, x6, x493 ]



Set theoretic measures 
1957-2017.

Many definitions.
(about 20)

Mostly heuristic.
Conflicting opinions.

No principled way
to choose

between them.

On the Stability of Feature Selection Algorithms

which is known as the normalized percentage of overlapping genes (nPOG). Nevertheless,
the expression of E [ri,j |H0] being unknown from the literature, they propose to estimate its
value “by the average of the scores for 10000 pairs of random lists” of size ki and kj (Zhang
et al., 2009, pg 1664). It is interesting to see how from two independent pieces of literature,
the same correcting term was proposed so that it holds a same property of being corrected
by chance. Furthermore, Theorem 3 shows that this measure is a true generalization of
Kuncheva’s stability measure to procedures selecting feature sets of varying cardinality.

Table 1: Similarity Measures proposed in the literature 2002–present, using the pairwise
formulation. In some cases the measure is extremely simple, (e.g. percentage overlap of
features) and authors are chosen simply as the first known usage in the context of stability
4.

First used in Name Measure [min,max]

Dunne et al. (2002) Hamming 1� |si\sj |+|si\sj |
d [0, 1]

Kalousis et al. (2005) Jaccard |si\sj |
|si[sj | [0, 1]

Yu et al. (2008) Dice-Sørenson 2|si\sj |
|si|+|sj | [0, 1]

Goh and Wong (2016) Ochiai |si\sj |p
|si||sj |

[0, 1]

Shi et al (2006) POG |si\sj |
|si| [0, 1]

Kuncheva (2007) Consistency
ri,j� k2

d

k� k2

d

[�1, 1]

Lustgarten et al. (2009) Lustgarten
ri,j�

kikj
d

min(ki,kj)�max(0,ki+kj�d) [�1, 1]

Wald et al. (2013) Wald
ri,j�

kikj
d

min(ki,kj)�
kikj
d

[1� d, 1]

Zhang et al. (2009) nPOG
ri,j�

kikj
d

ki�
kikj
d

[1� d, 1]
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Estimating Stability… which set measure?



What properties do we want?

Nogueira, Sechidis, and Brown

the Correction for chance (3rd property), we regard Monotonicity as the most fundamental
property as it is implicitly defining the concept of stability.

The second property, Limits, concerns the upper/lower bounds of the similarity measure.
However, we point out that it contains two clauses. First, it states that the similarity values
should be bounded by constants not depending on k or d. Second, when two subsets are
identical, the maximum value should be attained. However as we will show, it is possible
for the first clause to hold while the second does not, and vice versa. Thus, part of Limits
could hold, while the other does not. This will be important in the following sections.

The third property, Correction for chance, was a novel concept introduced by Kuncheva.
This states that whenever we have independently drawn subsets at random, the stability
value should be constant in expectation.

Since this seminal work, the feature selection community has largely converged around
this approach and many other authors have identified these 3 properties as desirable if not
essential. Among them, we can cite the following works:

• Somol and Novovičová (2010); Zucknick et al. (2008); Guzmán-Mart́ınez and Alaiz-
Rodŕıguez (2011) require a stability measure to be bounded by constants;

• Guzmán-Mart́ınez and Alaiz-Rodŕıguez (2011) require that �̂(Z) reaches its maximum
whenever all the feature sets in Z are identical;

• Zhang et al. (2009); Lustgarten et al. (2009); Guzmán-Mart́ınez and Alaiz-Rodŕıguez
(2011) require a measure to be corrected for chance.

As is evident, the literature after Kuncheva largely followed the property-based approach.
This illustrates that properties of stability measures are an issue in the community and
strengthens the need for this analysis.

In this section, we motivated the need for an property-based approach and showed
that the construction of several measures has been based on properties first suggested by
Kuncheva (2007). We would like to compare the existing measures in terms of properties
and verify which stability measures verify which properties. In this approach, we faced the
issue that the properties proposed by Kuncheva (2007) are given for similarity measures �
(e.g. Jaccard Index) and hence cannot be applied to non-similarity-based measures, e.g.
CWrel (Somol and Novovičová, 2010).

�̂(Z)

| {z }
Stability measure

=
1

M(M � 1)

MX

i=1

MX

j=1
j 6=i

�(si, sj)

| {z }
Similarity measure

.

First, properties for � do not necessarily imply properties for �̂. For instance, a similarity
measure � that is not bounded by constants independent of k and d can result in a stability
measure �̂ that is bounded. Second, transposing these properties for the stability �̂ is not
necessarily straightforward. For instance, we can wonder how the property Monotonicity
defined for a pair of feature sets would translate when looking at the whole sequence Z of
feature sets. This stresses the need of an equivalent phrasing for the stability measure �̂,
which will be the topic of the next section.
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What properties do we want?

Nogueira, Sechidis, and Brown

the Correction for chance (3rd property), we regard Monotonicity as the most fundamental
property as it is implicitly defining the concept of stability.

The second property, Limits, concerns the upper/lower bounds of the similarity measure.
However, we point out that it contains two clauses. First, it states that the similarity values
should be bounded by constants not depending on k or d. Second, when two subsets are
identical, the maximum value should be attained. However as we will show, it is possible
for the first clause to hold while the second does not, and vice versa. Thus, part of Limits
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The third property, Correction for chance, was a novel concept introduced by Kuncheva.
This states that whenever we have independently drawn subsets at random, the stability
value should be constant in expectation.

Since this seminal work, the feature selection community has largely converged around
this approach and many other authors have identified these 3 properties as desirable if not
essential. Among them, we can cite the following works:
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…as the sets overlap more, the measure should increase.

maximal

minimal

Desirable property 2: Strict Monotonicity

Nogueira, Sechidis, and Brown

the Correction for chance (3rd property), we regard Monotonicity as the most fundamental
property as it is implicitly defining the concept of stability.

The second property, Limits, concerns the upper/lower bounds of the similarity measure.
However, we point out that it contains two clauses. First, it states that the similarity values
should be bounded by constants not depending on k or d. Second, when two subsets are
identical, the maximum value should be attained. However as we will show, it is possible
for the first clause to hold while the second does not, and vice versa. Thus, part of Limits
could hold, while the other does not. This will be important in the following sections.

The third property, Correction for chance, was a novel concept introduced by Kuncheva.
This states that whenever we have independently drawn subsets at random, the stability
value should be constant in expectation.

Since this seminal work, the feature selection community has largely converged around
this approach and many other authors have identified these 3 properties as desirable if not
essential. Among them, we can cite the following works:

• Somol and Novovičová (2010); Zucknick et al. (2008); Guzmán-Mart́ınez and Alaiz-
Rodŕıguez (2011) require a stability measure to be bounded by constants;

• Guzmán-Mart́ınez and Alaiz-Rodŕıguez (2011) require that �̂(Z) reaches its maximum
whenever all the feature sets in Z are identical;

• Zhang et al. (2009); Lustgarten et al. (2009); Guzmán-Mart́ınez and Alaiz-Rodŕıguez
(2011) require a measure to be corrected for chance.

As is evident, the literature after Kuncheva largely followed the property-based approach.
This illustrates that properties of stability measures are an issue in the community and
strengthens the need for this analysis.

In this section, we motivated the need for an property-based approach and showed
that the construction of several measures has been based on properties first suggested by
Kuncheva (2007). We would like to compare the existing measures in terms of properties
and verify which stability measures verify which properties. In this approach, we faced the
issue that the properties proposed by Kuncheva (2007) are given for similarity measures �
(e.g. Jaccard Index) and hence cannot be applied to non-similarity-based measures, e.g.
CWrel (Somol and Novovičová, 2010).

�̂(Z)

| {z }
Stability measure

=
1

M(M � 1)

MX

i=1

MX

j=1
j 6=i

�(si, sj)

| {z }
Similarity measure

.

First, properties for � do not necessarily imply properties for �̂. For instance, a similarity
measure � that is not bounded by constants independent of k and d can result in a stability
measure �̂ that is bounded. Second, transposing these properties for the stability �̂ is not
necessarily straightforward. For instance, we can wonder how the property Monotonicity
defined for a pair of feature sets would translate when looking at the whole sequence Z of
feature sets. This stresses the need of an equivalent phrasing for the stability measure �̂,
which will be the topic of the next section.
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Desirable property 3: Known upper/lower Bounds

On the Stability of Feature Selection Algorithms

s1 = {x1, x2, x3}  ����������!
s2 = {x2, x3, x5}  ����������!

sM = {x1, x2, x4, x5}  ��������!

2
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1 1 1 0 0
0 1 1 0 1

...

...

...

...

...
1 1 0 1 1

3
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Figure 1: Two alternative (but representationally equivalent) forms for considering stability:
set notation (LEFT) and binary matrix notation (RIGHT). Starting from set notation
encourages thinking about stability in terms of set intersection/union operations, whereas
starting from the binary matrix encourage the statistical view, which we follow in this paper.

3. Existing Stability Measures

In this section, we review all existing stability measures. Because di↵erent pieces of the
literature use very di↵erent notations and/or some alternative representation, we prove the
equivalences between their original definition and our unified notation in Appendix ?.

3.1 Similarity-based Stability Measures

A popular approach is based on similarity of feature subsets. Assume we apply a feature
selection procedure to M data samples. One way to look at the output is to consider it as
M feature subsets of the original set of d features {x1, ..., xd}. As illustrated in Fig. 1, a
way to represent the output of the feature selection is to look at it as a subset of all the
features. A very natural way to define the stability of the M feature sets in X is then to
look at how similar are the sets to each other. This was the idea introduced by Dunne
et al. (2002). Let � be a function that takes as an input two feature sets si and sj and that
returns a value measuring the similarity between these two sets. Then the (not necessarily
symmetric) stability �̂(X ) is defined as:

�̂(X ) =
1

M(M � 1)

MX

i=1

MX

j=1
j 6=i

�(si, sj).

We include the ‘hat’ notation �̂ to acknowledge that the value is an estimate of an underly-
ing quantity, dependent on the sample size M . The more the feature sets in X are similar

to each other on average over the M runs, the larger the value of �̂(X ) will be. Therefore,
the definition of �̂ and its properties critically depend on the choice of a similarity measure.
Many such similarity measures have been used to quantify stability. We will refer to this
category of stability measures as the similarity-based measures. In this section, we first
describe the similarity measures proposed in the literature and will ...

5

For interpretability and comparison
across problems/algorithms,

… it should have
known, finite upper/lower bounds,

Minimum
stability

Maximum
stability

Property 3

No logarithms!



Desirable property 5: Correction for chance

00000000010010000000…
00000000000001000001…

Trial 1

Trial 2

Selecting 2 features  from 200…

11000Trial 1
Trial 2

Is very different to selecting 2 from 5… High chance of 
intersection, 

even if random!01100

Property 5



On the Stability of Feature Selection Algorithms

which is known as the normalized percentage of overlapping genes (nPOG). Nevertheless,
the expression of E [ri,j |H0] being unknown from the literature, they propose to estimate its
value “by the average of the scores for 10000 pairs of random lists” of size ki and kj (Zhang
et al., 2009, pg 1664). It is interesting to see how from two independent pieces of literature,
the same correcting term was proposed so that it holds a same property of being corrected
by chance. Furthermore, Theorem 3 shows that this measure is a true generalization of
Kuncheva’s stability measure to procedures selecting feature sets of varying cardinality.

Table 1: Similarity Measures proposed in the literature 2002–present, using the pairwise
formulation. In some cases the measure is extremely simple, (e.g. percentage overlap of
features) and authors are chosen simply as the first known usage in the context of stability
4.

First used in Name Measure [min,max]

Dunne et al. (2002) Hamming 1� |si\sj |+|si\sj |
d [0, 1]

Kalousis et al. (2005) Jaccard |si\sj |
|si[sj | [0, 1]

Yu et al. (2008) Dice-Sørenson 2|si\sj |
|si|+|sj | [0, 1]

Goh and Wong (2016) Ochiai |si\sj |p
|si||sj |

[0, 1]

Shi et al (2006) POG |si\sj |
|si| [0, 1]

Kuncheva (2007) Consistency
ri,j� k2

d

k� k2

d

[�1, 1]

Lustgarten et al. (2009) Lustgarten
ri,j�

kikj
d

min(ki,kj)�max(0,ki+kj�d) [�1, 1]

Wald et al. (2013) Wald
ri,j�

kikj
d

min(ki,kj)�
kikj
d

[1� d, 1]

Zhang et al. (2009) nPOG
ri,j�

kikj
d

ki�
kikj
d

[1� d, 1]
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1 2 3 4 5 See paper for the 
75 proofs!

On the Stability of Feature Selection Algorithms

Name Fully defined Monotonicity Bounds Maximum Correction

Hamming 3 3 3 3

Jaccard 3 3 3 3

Dice 3 3 3 3

Ochiai 3 3 3 3

POG 3 3 3 3

Kuncheva 3 3 3 3

Lustgarten 3 3 3 3

Wald 3 3 3

nPOG 3 3 3 3

Goh 3 3

Davis 3 3

Kŕızek 3

Guzmán 3 3 3

CWrel 3 3 3

Lausser 3 3 3

Table 1: Properties of Stability Measures proposed in the literature 2002–2017. For each of
the 15 measures, and for each of the 5 properties, we prove which measure satisifies
which property — full proofs available in Appendix C.

interpretation of stability values across problems or for di↵erent number of features selected,
which can be restrictive in many applications.

4.2.4 Maximum Stability $ Deterministic Selection

As illustrated by Figure 2, some of the measures like Wald and CWrel (Somol and Novovičová,
2010) violate the forward implication (left sub-figure), while some others like the one pro-
posed by Lustgarten et al. (2009) violate the backward implication (right sub-figure).

4.2.5 Correction for Chance

For illustrative purposes, we reproduced the experiment of Kuncheva (2007) in Figure 3.
Let us assume that a feature selection procedure randomly selects k features out of d =
10 features and that we estimate the stability based on M = 100 repeats for di↵erent
values of k. As we can see, even though the feature selection procedure is random and
therefore corresponds to a fully unstable situation (i.e. we are under the Null Model of
Feature Selection H0), some stability measures are strongly biased by the feature set size.
For instance, we can see that using the Dice similarity measure, the stability systemically
increases with the number of features selected, thus being in favour of larger feature sets.
For k = 9 features selected, the stability value using the Dice index is about 0.9 which can

15

Results…

?



So where do these properties point?

Property 1

Property 5

Property 2

Property 3

Property 4

?

Nogueira et al, “On The Stability of Feature Selection”
Journal of Machine Learning Research 2018



1. All 5 desirable properties, as discussed.

2. Clean statistical interpretation
....Confidence intervals and hypothesis tests come for free

3. Computable in closed form, as opposed to quadratic



Journal off Machine Machine Learning Research, 2018



Efficacy of gefitinib vs chemotherapy for lung cancer.

2 competing biomarker sets. Which do we trust?

12 K. Sechidis et al.

Table 3: Top-4 prognostic biomarkers in IPASS for each competing method. The
results can be interpreted by domain experts (e.g. clinicians) on their biological
plausibility. However, to answer in what extend these sets are reproducible and
how they can be a↵ected by small changes in the data (such as patient dropouts)
we need to evaluate their stability.

Rank GBM CMIM

1 EGFR expression (X4) EGFR mutation (X2)
2 Disease stage (X10) Serum ALP(X13)
3 WHO perform. status (X1) Blood leukocytes (X21)
4 Serum ALT(X12) Serum ALT (X12)

in an Asian population of 1217 light- or non-smokers with advanced non-small
cell lung cancer. A detailed description of the trial and the biomarkers used in
the IPASS study are given in the Appendix A.

In this section we will focus on two commonly used algorithms: Gradient
Boosted Machines [8] and conditional mutual information maximisation (CMIM)
[6]. GBM sequentially builds a weighted voting ensemble of decision stumps
based on single features, while CMIM is an information theoretic measure based
on maximising conditional mutual information. These two methods are quite
di↵erent in nature: for example GBM builds decision trees, while CMIM estimates
two-way feature interactions. As a result, they often return di↵erent biomarker
subsets and choosing which one to take forward in a phased clinical study is an
important problem.

Table 3 presents the top-4 prognostic biomarkers derived by each method. We
observe that the two methods return significantly di↵erent biomarker sets; Which
one should we trust? To answer this question we estimate their stability with
respect to data variations using M = 50 and 5% leave-out. This could simulate
the scenario where for some patients we do not know the outcome e.g. they
dropped out from the trial. In table 4 we see that when using b�(Z), in agreement
with data science folklore, GBM is judged a stable method, more so than CMIM.

But, with a closer study of the biomarkers considered in IPASS, there are
in fact groups of them which are biologically related: (Group A) those that
describe the receptor protein EGFR, X2, X3, X4, (Group B) those which are
measures of liver function, X12, X13, X14, and (Group C) those which are counts
of blood cells, X20, X21, X22, X23. There are also sub-groupings at play here. For
instance, given that neutrophils are in fact a type of leukocyte (white blood cell),
one may expect X21 and X22 to exhibit a stronger pairwise correlation than any
other pair of cell count biomarkers.

We can take these groupings and redundancies into account by setting to 1,
all of the elements in C matrix that represent pairs of features that belong the
the same group. Table 4 compares the e↵ective stability of the two algorithms
using our novel measure b�C(Z), which takes into account the groups A, B and
C. This time, CMIM is substantially more stable than GBM—leading to the

Case Study: Non-Small Cell Lung Cancer



Case Study: Non-Small Cell Lung Cancer
Stability of Feature Selection in the Presence of Feature Correlations 13

Table 4: Stability and e↵ective stability of GBM and CMIM in IPASS. The
instability of CMIM is caused by variations within groups of semantically related
biomarkers. When this is taken into account using b�C(Z) the method is deemed
more stable than GBM.

GBM CMIM

Stability b�(Z) 0.87 > 0.68
- within Group A 0.96 0.45
- within Group B 0.82 0.80
- within Group C 0.14 0.43

E↵ective stability b�C(Z) 0.87 < 0.91

conjecture that the instability in GBM is generated by variations between groups,
while CMIM is caused by within-group variations.

To validate this conjecture, we calculate the stability within each group using
b�(Z). In table 4 we observe that CMIM has small stability, especially within the
groups A and C. The algorithm alternates between selecting biomarkers that are
biologically related, hence when we incorporate domain knowledge the e↵ective
stability of CMIM increases significantly. Thus, based on our prior knowledge on
feature relationships, CMIM is the more desirable prospect to take forward.

5 Conclusions

We presented a study on the estimation of stability of feature selection in
the presence of feature redundancy. This is an important topic, as it gives an
indication of how reliable a selected subset may be, given correlations in the
data or domain knowledge. We showed that existing measures are unsuitable and
potentially misleading, also proving that many will systematically under-estimate
the stability. As a solution to this, we presented a novel measure which allows us
to incorporate information about correlated and/or semantically related features.
An empirical study across 10 datasets and 7 distinct feature selection methods
confirmed the utility, while a case study on real clinical trial data highlighted
how critical decisions might be altered as a result of the new measure.

A IPASS description

The IPASS study [13] was a Phase III, multi-center, randomised, open-label,
parallel-group study comparing gefitinib (Iressa, AstraZeneca) with carboplatin
(Paraplatin, Bristol-Myers Squibb) plus paclitaxel (Taxol, Bristol-Myers Squibb)
as first-line treatment in clinically selected patients in East Asia who had NSCLC.
1217 patients were balanced randomised (1:1) between the treatment arms, and
the primary end point was progression-free survival (PFS); for full details of the
trial see [13]. For the purpose of our work we model PFS as a Bernoulli endpoint,

Measure within-group stability
to see what’s happening…

Changes our view
of the “best” algorithm to invest in.

All EGFR gene 
mutations

(known to play a role in NSCLC)



The Take-Home Message

Reproducibility is not a yes /no question.

Reproducibility = Trust

The industry needs methods to quantify reproducibility.

On the Reproducibility of Data Science Pipelines
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