Evolution of Representations in the Transformer

Lena Voita

Based on EMNLP 2019 paper by Elena Voita^{1,2,3}, Rico Sennrich^{4,2}, Ivan Titov^{2,3}

Words -> words in context

• Shift from static embeddings to contextualized word representations

Words -> words in context

• Shift from static embeddings to contextualized word representations

ELMo

Architecture: bi-LSTM

Training objective: LM

How: add ELMo representations to the task-specific model

Words -> words in context

• Shift from static embeddings to contextualized word representations

ELMo

BERT

Architecture: bi-LSTM

Training objective: LM

How: add ELMo representations to the task-specific model

Architecture: Transformer

Training objective: MLM

How: use BERT representations INSTEAD of the task-specific model

And it was the beginning of a very long story...

What do models learn?

probing classifiers

Picture credit: Liu et al, 2019

What do models learn?

- probing classifiers
- model components (e.g., importance and functions of attention heads)

What do models learn?

- probing classifiers
- model components (e.g., importance and functions of attention heads)
- fill in the blanks

Top 5 predictions and log probabilities

	$y_{ m man}$	${oldsymbol{\mathcal{Y}}_{ ext{mine}}}$	y_{para}
1	Intel -1.06	Microsoft -1.77	Microsoft -2.23
2	Microsoft -2.21	They -2.43	Intel -2.30
3	IBM -2.76	It -2.80	default -2.96
4	Google -3.40	Sega -3.01	Apple -3.44
5	Nokia -3.58	Sony -3.19	Google -3.45

Picture credit: Jiang et al, 2019

Why a more general understanding is important?

It can:

- give intuition for creating a better training objective
- give intuition of how to properly use pretrained representations
- explain "puzzles" from previous work

Plan

- Evolution of representations of individual tokens
- Training objectives: LM, MLM, MT
- "Puzzles" from previous work
- The Information-Bottleneck: our point of view
- Experiments

Plan

- Evolution of representations of individual tokens
- Training objectives: LM, MLM, MT
- "Puzzles" from previous work
- The Information-Bottleneck: our point of view
- Experiments

Initial representations: token and position Input data

Plan

- Evolution of representations of individual tokens
- Training objectives: LM, MLM, MT
- "Puzzles" from previous work
- The Information-Bottleneck: our point of view
- Experiments

Plan

- Evolution of representations of individual tokens
- Training objectives: LM, MLM, MT
- "Puzzles" from previous work
- The Information-Bottleneck: our point of view
- Experiments

Tasks: LM, MLM, MT

LM - Language Modeling

LM - Language Modeling

Input: current token identity and position

Output: next token

MLM – Masked Language Modeling (aka BERT)

- some tokens are selected (with probability p=15%)
- selected tokens are either replaced with [mask], random or current token

MLM - Masked Language Modeling (aka BERT)

Input: [mask], random or current token identity and position

Output: current token

MT – Machine Translation

MT – Machine Translation

Input: current token identity and position

Output: nothing is predicted directly

The bottom-up evolution

- Fix: model and training data
- Vary: training objective

The bottom-up evolution

- Fix: model and training data
- Vary: training objective

The bottom-up evolution

- Fix: model and training data
- Vary: training objective

Plan

- Evolution of representations of individual tokens
- Training objectives: LM, MLM, MT
- "Puzzles" from previous work
- The Information-Bottleneck: our point of view
- Experiments

Previous work: "puzzling" results

Untrained LSTMs are better for token prediction

 Untrained LSTMs outperform trained ones for word identity prediction task (Zhang & Bowman, 2018)

MT behavior is monotonic, LM is not

• For constituent labeling prediction, MT shows monotonic behavior, while LM non-monotonic (Blevins et al, 2018)

Illustration is from the original paper by Blevins et al, 2018

BERT behavior is not monotonic

• For different tasks the contribution of a layer to a task increases up to a certain layer, but then decreases at the top layers (Tenney et al, 2019)

Illustration is from the original paper by Tenney et al, 2019

Why is this happening?

Problems:

- Evidence is somewhat anecdotal
- No explanation of the process behind such behavior

Plan

- Evolution of representations of individual tokens
- Training objectives: LM, MLM, MT
- "Puzzles" from previous work
- The Information-Bottleneck: our point of view
- Experiments

Plan

- Evolution of representations of individual tokens
- Training objectives: LM, MLM, MT
- "Puzzles" from previous work
- The Information-Bottleneck: our point of view
- Experiments

The Information-Bottleneck Viewpoint

The IB method:

$$\widehat{X}: I(\widehat{X}, X) - \beta I(\widehat{X}, Y) \rightarrow min, \beta > 0$$

The IB method:

$$\hat{X}: I(\hat{X}, X) - \beta I(\hat{X}, Y) \rightarrow min, \beta > 0$$

In neural networks:

The IB method:

$$\hat{X}: I(\hat{X}, X) - \beta I(\hat{X}, Y) \rightarrow min, \beta > 0$$

In neural networks:

- a sequence of layers is a Markov chain
- squeeze irrelevant to Y information while retaining relevant

data

The IB method:

$$\widehat{X}: I(\widehat{X},X) - \beta I(\widehat{X},Y) \rightarrow min, \beta > 0$$

In neural networks:

- a sequence of layers is a Markov chain
- squeeze irrelevant to Y information while retaining relevant

data

The IB method:

$$\hat{X}: I(\hat{X}, X) - \beta I(\hat{X}, Y) \rightarrow min, \beta > 0$$

In neural networks:

- a sequence of layers is a Markov chain
- squeeze irrelevant to Y information while retaining relevant

The IB method:

$$\hat{X}: I(\hat{X}, X) - \beta I(\hat{X}, Y) \rightarrow min, \beta > 0$$

In neural networks:

- a sequence of layers is a Markov chain
- squeeze irrelevant to Y information while retaining relevant

The IB method:

$$\hat{X}: I(\hat{X}, X) - \beta I(\hat{X}, Y) \rightarrow min, \beta > 0$$

In neural networks:

- a sequence of layers is a Markov chain
- squeeze irrelevant to Y information while retaining relevant

The IB method:

$$\hat{X}: I(\hat{X}, X) - \beta I(\hat{X}, Y) \rightarrow min, \beta > 0$$

In neural networks:

- a sequence of layers is a Markov chain
- squeeze irrelevant to Y information while retaining relevant

The IB method:

$$\widehat{X}: I(\widehat{X}, X) - \beta I(\widehat{X}, Y) \rightarrow min, \beta > 0$$

In neural networks:

- a sequence of layers is a Markov chain
- squeeze irrelevant to Y information while retaining relevant

Plan

- Evolution of representations of individual tokens
- Training objectives: LM, MLM, MT
- "Puzzles" from previous work
- The Information-Bottleneck: our point of view
- Experiments

Plan

- Evolution of representations of individual tokens
- Training objectives: LM, MLM, MT
- "Puzzles" from previous work
- The Information-Bottleneck: our point of view
- Experiments
 - Information Bottleneck for token representations

0 ...

Information Bottleneck for Token Representations

Model as a function from input to output

Our setting: representations of individual tokens

Two roles a token representation plays:

Our setting: representations of individual tokens

Two roles a token representation plays:

Predicting the output label

Our setting: representations of individual tokens

Two roles a token representation plays:

- Predicting the output label
- Preserving information necessary to build representations of other tokens

The task defines:

- the nature of changes a token representation undergoes, from layer to layer
- the process of interactions and relationships between tokens
- the type of information which gets lost and acquired by a token representation in these interactions

For MT, the behavior is similar, but to lesser extent

MI between a representation and both input and output

MI between a representation and both input and output

MI with both input and output tokens

Plan

- Evolution of representations of individual tokens
- Training objectives: LM, MLM, MT
- "Puzzles" from previous work
- The Information-Bottleneck: our point of view
- Experiments
 - o Information Bottleneck for token representations

0 ...

Plan

- Evolution of representations of individual tokens
- Training objectives: LM, MLM, MT
- "Puzzles" from previous work
- The Information-Bottleneck: our point of view
- Experiments
 - o Information Bottleneck for token representations
 - o Analyzing changes and influences

O ...

Analyzing Changes and Influences

Analyzing Changes and Influences

- how much change is happening in a given layer
- which tokens gain more information from other tokens
- which tokens influence other tokens most

Analyzing Changes and Influences

- how much change is happening in a given layer
- which tokens gain more information from other tokens
- which tokens influence other tokens most

Views on the data

- use PWCCA a version of canonical correlation analysis (CCA)
- PWCCA measures similarity between pairs of 'views' on the data

Views on the data

- use PWCCA a version of canonical correlation analysis (CCA)
- PWCCA measures similarity between pairs of 'views' on the data

Views on the data

- use PWCCA a version of canonical correlation analysis (CCA)
- PWCCA measures similarity between pairs of 'views' on the data

A coarse-grained view: Distance between tasks

A coarse-grained view: Distance between tasks

MT and MLM are closer to each other, than they are to LM

Amount of change and influence

 Change: how much representations of <u>these</u> tokens change between layers

Amount of change and influence

• Change: how much representations of <u>these</u> tokens change between layers

Amount of change and influence

 Change: how much representations of <u>these</u> tokens change between layers

• Change: how much representations of <u>these</u> tokens change between layers

• Change: how much representations of these tokens change between layers

0.02

1-2

2-3

4-5

3-4

Layers

5-6

• Change: how much representations of <u>these</u> tokens change between layers

• Change: how much representations of <u>these</u> tokens change between layers

 Change: how much representations of <u>these</u> tokens change between layers

The two stages again!

MLM

"views" on

the data

Plan

- Evolution of representations of individual tokens
- Training objectives: LM, MLM, MT
- "Puzzles" from previous work
- The Information-Bottleneck: our point of view
- Experiments
 - o Information Bottleneck for token representations
 - o Analyzing changes and influences

0 ...

Plan

- Evolution of representations of individual tokens
- Training objectives: LM, MLM, MT
- "Puzzles" from previous work
- The Information-Bottleneck: our point of view
- Experiments
 - o Information Bottleneck for token representations
 - Analyzing changes and influences
 - o What does a layer represent?

What does a layer represent?

The bottom-up evolution

 All models start from the same representation: token identity and position

The cats are tired of sitting on a mat

The cats are hungry

This is a great opportunity

Are you happy?

It is raining This mat is full of cats

Simon is a lazy cat

Is it Jane?

What is an evolution?

These apples are so tasty!

They were on vacation last week

Was it a good vacation?

l was glad to see you

 Take large number of representations of different tokens

The cats are tired of sitting on a mat The cats are hungry This is a great opportunity Are you happy? It is raining This mat is full of cats Simon is a lazy cat What is an evolution? These apples are so tasty! They were on vacation last week Was it a good vacation?

was glad to see you

- Take large number of representations of different tokens
- Evaluate the proportion of top-k neighbors which have the same token identity

Really similar to the MI results!

• t-SNE of different occurrences of the tokens is, are, was, were

Look how MLM disambiguates masked tokens

• t-SNE of different occurrences of the tokens is, are, was, were

Layers

Look how MLM disambiguates masked tokens

• t-SNE of different occurrences of the tokens is, are, was, were

Look how MLM disambiguates masked tokens

Preserving token identity

• t-SNE of different occurrences of the tokens is, are, was, were

Look how MLM disambiguates masked tokens

Preserving token identity

• t-SNE of different occurrences of the tokens is, are, was, were

Look how MLM disambiguates masked tokens

Preserving token identity

• t-SNE of different occurrences of the tokens is, are, was, were

Look how MLM disambiguates masked tokens

What's next: lexical and syntactic context

We also look at:

- Lexical context (identities of adjacent tokens)
- Syntactic context (CCG tags with their left/right parts)

Lexical context (identities of adjacent tokens)

Lexical context (identities of adjacent tokens)

Syntactic context (CCG tags)

Syntactic context (CCG tags)

• t-SNE of different occurrences of the token "is". CCG tag is in color.

Relation to other works

Previous work: Untrained LSTMs are better for token prediction

• Untrained LSTMs outperform trained ones for word identity prediction task (Zhang & Bowman, 2018)

Previous work: MT behavior is monotonic, LM is not

• For constituent labeling prediction, MT shows monotonic behavior, while LM non-monotonic (Blevins et al, 2018)

Previous work: BERT behavior is not monotonic

• For different tasks the contribution of a layer to a task increases up to a certain layer, but then decreases at the top layers (Tenney et al, 2019)

Illustration is from the original paper by Tenney et al, 2019

Recent works BERTScore: Evaluating Text Generation with BERT

(Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, Yoav Artzi, ICLR 2020)

• BERT representations are used to build a metric

BERT models: Pearson Correlation of BERT-F1 with human assessment on WMT-16 to-en

The two stages: 'context encoding' and 'token reconstruction'

Illustration is from the original paper

Conclusions

Our key findings are:

- for LM, evolution is a transition from known past to the unknown future;
- MLMs initially acquire information about context, then recreate token; this happens in two stages;
- for MT, representations get refined with context, but most of the information is preserved.

Our key contributions:

- we propose to view the evolution of a token representation from the compression/prediction trade-off perspective;
- we conduct a series of experiments supporting this view;
- we relate to some findings from previous work, putting them in the proposed perspective.

Official blog post

Evolution of Representations in the Transformer

This is a post for the EMNLP 2019 paper The Bottom-up Evolution of Representations in the Transformer: A Study with Machine Translation and Language Modeling Objectives.

We look at the evolution of representations of individual tokens in Transformers trained with different training objectives (MT, LM, MLM - BERT-style) from the Information Bottleneck perspective and show, that:

- LMs gradually forget past when forming predictions about future;
- for MLMs, the evolution proceeds in two stages of context encoding and token reconstruction;
- MT representations get refined with context, but less processing is happening.

→ read more

September 2019

https://lena-voita.github.io

More Analysis: The Story of Heads

https://lena-voita.github.io

Thank you!

Lena Voita

Research Scientist, Yandex Research

PhD student, Uni Amsterdam & Uni Edinburgh

lena-voita@yandex-team.ru

https://lena-voita.github.io

@lena_voita

lena-voita