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Architecture: bi-LSTM

Training objective: LM

How: add ELMo representations 

to the task-specific model

BERT

Architecture: Transformer

Training objective: MLM

How: use BERT representations 

INSTEAD of the task-specific model

• Shift from static embeddings to contextualized word representations



And it was the beginning of a very long story…
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What do models learn?
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Picture credit: Liu et al, 2019

• probing classifiers
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• probing classifiers

• model components (e.g., importance 
and functions of attention heads)

Voita et al, 2019



What do models learn?
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• probing classifiers

• model components (e.g., importance 
and functions of attention heads)

• fill in the blanks

Picture credit: Jiang et al, 2019



Why a more general understanding is important?
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• give intuition for creating a better training objective

• give intuition of how to properly use pretrained representations

• explain “puzzles” from previous work

It can:
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Tasks: LM, MLM, MT
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LM MLM MT



LM - Language Modeling
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LM - Language Modeling
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Input:  current token identity and position

Output: next token



MLM – Masked Language Modeling (aka BERT)
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• some tokens are selected (with 
probability p=15%)

• selected tokens are either 
replaced with [mask], random or 
current token



MLM – Masked Language Modeling (aka BERT)
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Input:  [mask], random or current 

token identity and position

Output: current token



MT – Machine Translation
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MT – Machine Translation
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Input:  current token identity and position

Output: nothing is predicted directly
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• Fix: model and training data
• Vary: training objective

The bottom-up evolution

MTLM MLM
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Previous work: “puzzling” results



Untrained LSTMs are better for token prediction
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• Untrained LSTMs outperform trained ones for word identity prediction 
task (Zhang & Bowman, 2018)



MT behavior is monotonic, LM is not
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• For constituent labeling prediction, MT shows monotonic behavior, 
while LM non-monotonic (Blevins et al, 2018)

MT LM

Illustration is from the original paper by Blevins et al, 2018



BERT behavior is not monotonic
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• For different tasks the contribution of a layer to a task increases up to a 
certain layer, but then decreases at the top layers  (Tenney et al, 2019)

Illustration is from the original paper 
by Tenney et al, 2019

Layers



Why is this happening?
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Problems:

• Evidence is somewhat 
anecdotal

• No explanation of the process 
behind such behavior
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The Information-
Bottleneck Viewpoint
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Information Bottleneck for 
Token Representations



Model as a function from input to output

3

MT LM MLM

input

output
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Our setting: 

representations of individual tokens

Two roles a token representation plays:

• Predicting the output label

• Preserving information necessary to build 
representations of other tokens
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• the nature of changes a token representation undergoes, 
from layer to layer

• the process of interactions and relationships between 
tokens

• the type of information which gets lost and acquired by a 
token representation in these interactions

The task defines:
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MT LM MLM

MI between an input token and a representation
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MT LM MLM

MI between an input token and a representation

As at test time:
No masking



MI between an input token and a representation
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MI between an input token and a representation

34

LM loses information about the 
current input token



MI between an input token and a representation

34

For MT, the behavior is similar, 
but to lesser extent
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MI between an input token and a representation

34

For MLM, the information 
about input token gets lost, 

then recovered

Two stages:
‘context encoding’ and 
‘token  reconstruction’
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LM MLM

MI between a representation and both input and output

mat
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MI between a representation and both input and output

As in training:
With masking and replacing

mat

LM MLM
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MI with both input and output tokens

LM MLM

For MLM:
‘context encoding’ and 
‘token  prediction’ stages
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Analyzing Changes and 
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Analyzing Changes and Influences

39

• how much change is 
happening in a given layer

• which tokens gain more 
information from other tokens

• which tokens influence other 
tokens most

Comparison 
between network 
representations
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• use PWCCA – a version of canonical correlation analysis (CCA)
• PWCCA measures similarity between pairs of ‘views’ on the data
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A coarse-grained view: Distance between tasks
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A coarse-grained view: Distance between tasks

MT and MLM are 
closer to each other, 
than they are to LM



A coarse-grained view: Changes between layers

42



A coarse-grained view: Changes between layers

42

decreasing 
change for MT



A coarse-grained view: Changes between layers
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a lot of 
change for LM



A coarse-grained view: Changes between layers
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The two stages for MLM: 
’context encoding’ and 
‘token reconstruction’
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LMMT

• Change: how much representations of these
tokens change between layers

Roughly the same 
amount of change



Varying token frequency: Amount of change

44

LM MLMMT

• Change: how much representations of these
tokens change between layers

The two stages 
again!
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MT

• Influence: how much representations of other
tokens change if this token is not present
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Varying token frequency: Amount of influence

45

LM MLMMT

• Influence: how much representations of other
tokens change if this token is not present

Rare tokens influence more
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What does a layer represent?
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MT LM MLM

• All models start from the same representation: 
token identity and position

The bottom-up evolution

Token ”a” on position 3



Preserving token identity
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This is a great opportunity

These apples are so tasty!

I was glad to see you

They were on vacation last week

Simon is a lazy cat

This mat is full of cats

Are you happy?

Is it Jane?

Was it a good vacation?

What is an evolution?

It is raining

The cats are hungry
The cats are tired of sitting on a mat

• Take large number of 
representations of 
different tokens
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This is a great opportunity

These apples are so tasty!

I was glad to see you

They were on vacation last week

Simon is a lazy cat

This mat is full of cats

The cats are tired of sitting on a mat

Are you happy?

Is it Jane?

Was it a good vacation?

What is an evolution?

It is raining

The cats are hungry

• Take large number of 
representations of 
different tokens

• Evaluate the proportion of 
top-k neighbors which 
have the same token 
identity



Preserving token identity
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Really similar to the MI results!

Layers

A
cc

ur
ac

y
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• t-SNE of different occurrences of the tokens  is, are, was, were

Look how MLM 
disambiguates 
masked tokens

Layers



What’s next: lexical and syntactic context
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We also look at:

• Lexical context (identities of adjacent tokens)

• Syntactic context (CCG tags with their left/right parts)



Lexical context (identities of adjacent tokens)
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Lexical context (identities of adjacent tokens)
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LM: forgets past, forms future



Syntactic context (CCG tags)
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Syntactic context (CCG tags)

• t-SNE of different occurrences of the token “is”. CCG tag is in color.

Layers



Relation to other works



Previous work: 
Untrained LSTMs are better for token prediction
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• Untrained LSTMs outperform trained ones for word identity prediction 
task (Zhang & Bowman, 2018)



Previous work:
MT behavior is monotonic, LM is not
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• For constituent labeling prediction, MT shows monotonic behavior, 
while LM non-monotonic (Blevins et al, 2018)

MT LM

Illustration is from the original paper by Blevins et al, 2018



Previous work:
BERT behavior is not monotonic

58

• For different tasks the contribution of a layer to a task increases up to a 
certain layer, but then decreases at the top layers  (Tenney et al, 2019)

Illustration is from the original paper 
by Tenney et al, 2019



Recent works
BERTScore: Evaluating Text Generation with BERT
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• BERT representations are used to build a metric

IlIllustration is from the original paper

(Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, Yoav Artzi, ICLR 2020)

The two stages: 
’context encoding’ and 
‘token reconstruction’

https://openreview.net/profile?email=zty27x%40gmail.com
https://openreview.net/profile?email=vk352%40cornell.edu
https://openreview.net/profile?email=fw245%40cornell.edu
https://openreview.net/profile?email=kqw4%40cornell.edu
https://openreview.net/profile?email=yoav%40cs.cornell.edu


Conclusions



Our key findings are: 

• for LM, evolution is a transition from known 
past to the unknown future;

• MLMs initially acquire information about 
context, then recreate token; this happens in 
two stages;

• for MT, representations get refined with 
context, but most of the information is 
preserved.
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Our key contributions: 

• we propose to view the evolution of a token representation 
from the compression/prediction trade-off perspective;

• we conduct a series of experiments supporting this view;

• we relate to some findings from previous work, putting 
them in the proposed perspective.
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Official blog post

https://lena-voita.github.io
63



More Analysis: The Story of Heads

https://lena-voita.github.io
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