# Standardization of the data in food and nutrition

Nives Ogrinc



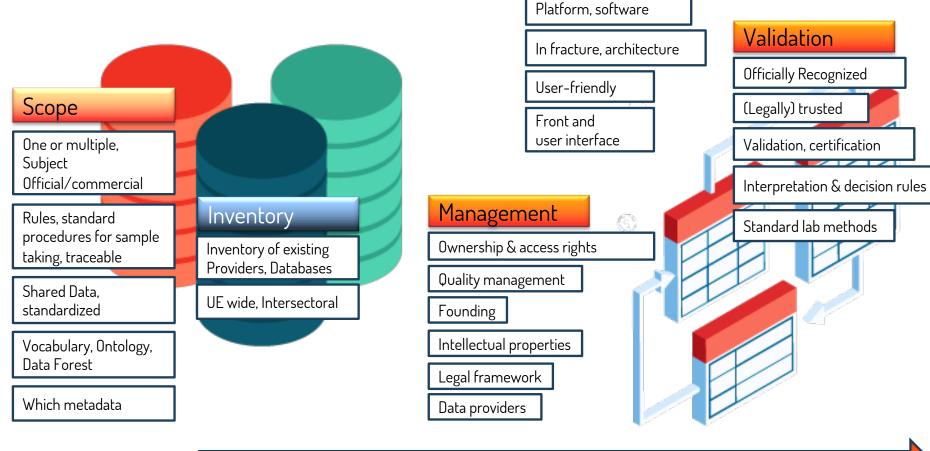
Dept. Environmental Sciences, Jožef Stefan Institute

Jožef Stefan International Postgraduate School

Jamova 39, 1000 Ljubljana, Slovenia

#### Food and nutrition composition data

Food Quality Safety Authenticity Traceability Security **Sustainability** 

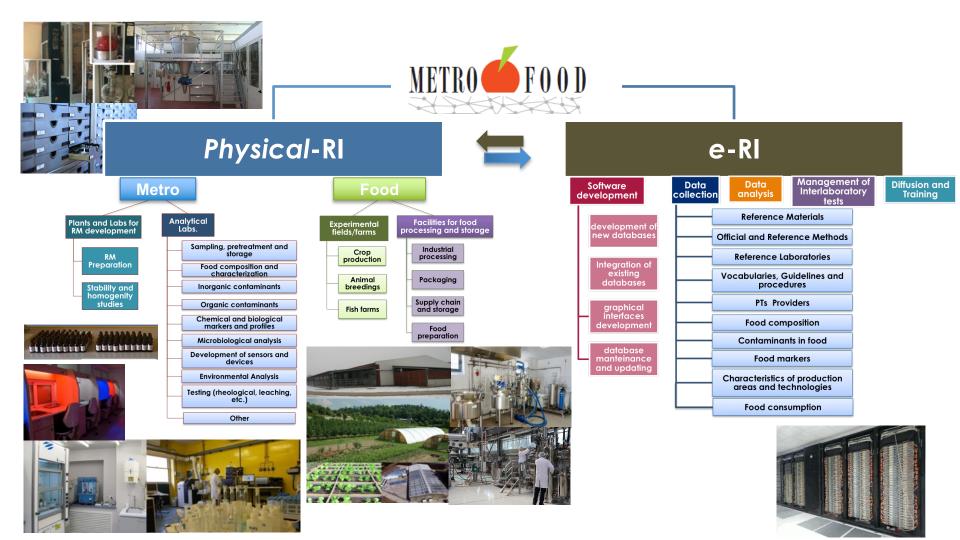

### Nutrition

Evaluating nutritional variation of plants and foods

Analyzing relationships between nutrient intake and disease

Establishing dietary guidelines

## Database




5 – 7 years

Architecture & IT

## Metrology in food Robustness, performance, quality control

4



#### Metrological tool

Standard operational procedures Sampling & sample; pre-treatment procedures

**Reference materials** 

Measurements uncertainty

**Proficiency testing** 







### Development of new reference material METROFOOD-PP

to demonstrate the capability of METROFOOD-RI to supply services (with particular reference to the P-RI) and to test its inter-operability **Oyster Tissue** 

Two important issues:

7

- characterization of RM
- interlaboratory comparison





Rice flour & rice grains (same variety and same origin)





| CLASS                     | of PARAMETER         | OYSTERS | RICE |
|---------------------------|----------------------|---------|------|
|                           | Vitamins             | 5       | 7    |
| Nutrients                 | Fibres               | 4       | 6    |
|                           | Others               | 6       | 7    |
|                           | Mycotoxins           | -       | 8    |
| Organic<br>contaminants   | Residues antibiotics | 4       | 8    |
| Comaninanti               | Others               | 6       | 7    |
| Inorganic<br>contaminants | Toxic elements       | 13      | 9    |
|                           | Speciation           | 7       | 6    |
| Contaminants              | of emerging concern  | 6       | 6    |
| Origin/Aut                | henticity/Isotopes   | 6       | 8    |
|                           | Others               | 3       | 3    |

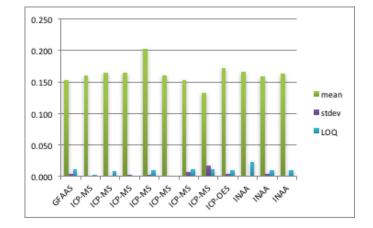
| Institution       |   | Parameters | for RM cha | aracterization | า |
|-------------------|---|------------|------------|----------------|---|
| Abbreviation/     |   |            |            |                |   |
|                   | 1 | 2          | 3          | 4              | 5 |
| Country           |   |            |            | X              | ~ |
| ENEA/IT (6 labs)  |   |            | Х          | Х              | Х |
| CNR/IT (6 labs)   | Х | Х          |            |                | Х |
| INRIM/IT          |   |            |            | Х              | Х |
| ISS/IT (2 labs)   |   | Х          | Х          |                |   |
| CREA/IT (3 labs)  | Х | Х          |            |                | Х |
| UniBS/IT          |   |            | Х          |                |   |
| INSA/PT           | Х |            | Х          | Х              |   |
| IBA/RO            | Х | Х          | Х          |                |   |
| CIDETEC/CIDETEC/E |   | х          | Х          |                |   |
| S                 |   |            |            |                |   |
| UPPA/FR           |   | Х          | Х          |                | Х |
| LNE/FR            |   | Х          | Х          |                |   |
| ANSES/FR          |   | Х          | Х          |                |   |
| ADERA/UT2A/FR     |   |            | Х          | Х              | Х |
| AUTH/GR           | Х |            |            |                |   |
| CULS/CZ           | Х |            | Х          |                |   |
| USZ/HU            |   | Х          | Х          | Х              |   |
| TUM/DE            |   | Х          |            |                | Х |
| JSI/SI (2 labs)   |   |            | Х          |                | Х |
| NIB/SI            |   | Х          |            |                |   |
| ZRC Koper/SI      | Х | Х          |            |                |   |
| IJZHP/MK          | Х |            | Х          |                |   |
| FASF/MK           | Х |            |            |                |   |
| WIV-ISP/BE        |   | Х          | Х          |                |   |
| TUBITAK/TR        |   | Х          | Х          |                |   |
| DAS/MD            | Х | Х          | Х          |                |   |

1 - nutritional and bioactive compounds

2 – organic contaminants and genetically modified organisms (GMO)

3 – inorganic contaminants

4 – contaminants of emerging concerns


5 - origin/authenticity/isotope

39 laboratories

### First attempt ....

| METHOD  | lab | Test<br>portion<br>(g) <sup>1</sup> | Measurand<br>(Analyte) | Unit <sup>2</sup> | Value 1 | Value 2 | Value 3 | Value 4 | Value 5 | Mean<br>value <sup>3</sup> | SD <sup>3</sup> |
|---------|-----|-------------------------------------|------------------------|-------------------|---------|---------|---------|---------|---------|----------------------------|-----------------|
| GFAAS   | 9   | 0.3                                 | As                     | mg/kg             | 0.157   | 0.155   | 0.155   | 0.150   | 0.147   | 0.153                      | 0.00414729      |
| ICP-MS  | 10  | 0.4                                 | As                     | mg/kg             | 0.160   | 0.160   | 0.160   | 0.160   | 0.160   | 0.160                      | 0.000000        |
| ICP-OES | 14  | 0.4                                 | As                     | mg/kg DW          | 0.177   | 0.171   | 0.167   | 0.169   | 0.176   | 0.172                      | 0.00            |
|         |     |                                     |                        |                   |         |         |         |         |         |                            |                 |
| ICP_MS  | 18  | 0.55                                | As                     | mg/kg             | 0.147   | 0.144   | 0.151   | 0.148   | 0.149   | 0.148                      | 0.00273325      |
| ICP_MS  | 18  | 0.55                                | As                     | mg/kg             | 0.154   | 0.157   | 0.153   | 0.153   | 0.154   | 0.154                      | 0.00151877      |

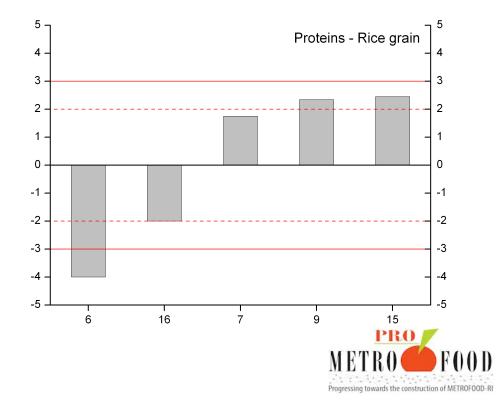
|         | LAB | test portion | mean  | stdev   | LOQ   |
|---------|-----|--------------|-------|---------|-------|
| GFAAS   | 9   | 0.30         | 0.153 | 0.00415 | 0.012 |
| ICP-MS  | 10  | 0.40         | 0.160 | 0.00000 | 0.003 |
| ICP-MS  | 23  | 0.15         | 0.165 | 0.00075 | 0.009 |
| ICP-MS  | 27  | 0.50         | 0.165 | 0.00289 | 0.001 |
| ICP-MS  | 32  | 1.00         | 0.202 | 0.00252 | 0.010 |
| ICP-MS  | 35  | 0.25         | 0.161 | 0.00141 | 0.002 |
| ICP-MS  | 18  | 0.55         | 0.152 | 0.00757 | 0.011 |
| ICP-MS  | 24  | 0.55         | 0.133 | 0.01679 | 0.011 |
| ICP-OES | 14  | 0.40         | 0.172 | 0.00436 | 0.010 |
| INAA    | 23  | 0.32         | 0.167 | 0.00192 | 0.023 |
| INAA    | 21  | 0.25         | 0.159 | 0.00491 | 0.010 |
| INAA    | 21  | 0.25         | 0.164 | 0.00195 | 0.010 |
|         |     | mean         | 0.163 |         |       |
|         |     | stdev        | 0.016 |         |       |
|         |     | mean         | 0.162 |         |       |
|         |     |              | 0.006 |         |       |
|         |     | %            | 3.764 |         |       |



#### Protein content (%)

#### 5 laboratories - numbers: 6, 7, 9, 15, 16

Sample mass: 0.5-1 g Analysis: 5 replicates in 5 sample bottles Method: Kjedahl Analiser


| Lab. | Rice flour | Rice grains | Oysters |
|------|------------|-------------|---------|
| 1    |            |             | 55.15   |
| 6    | 6.02       | 5.79        |         |
| 7    |            | 6.94        | 54.10   |
| 9    | 7.15       | 6.95        | 53.00   |
| 15   | 7.31       | 7.08        | 54.94   |
| 16   | 6.89       | 6.19        |         |
| Mean | 6.84       | 6.59        | 54.30   |
| STD  | 0.58       | 0.57        | 0.98    |
| Max  | 7.31       | 7.08        | 55.15   |
| Min  | 6.02       | 5.79        | 53.00   |



#### Statistical evaluation

| Lab. No. | Sample | Z-score |
|----------|--------|---------|
| 6        | 5.79   | -4.00   |
| 16       | 6.19   | -2.00   |
| 7        | 6.94   | 1.75    |
| 9        | 6.95   | 1.80    |
| 15       | 7.08   | 2.45    |

|z| ≤ 2 satisfactory result;
2 < |z| ≤ 3 questionable result (95 %);</li>
|z| > 3 unsatisfactory result (99 %).



11

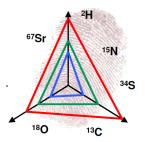
## 2. Food authenticity and traceability As an example

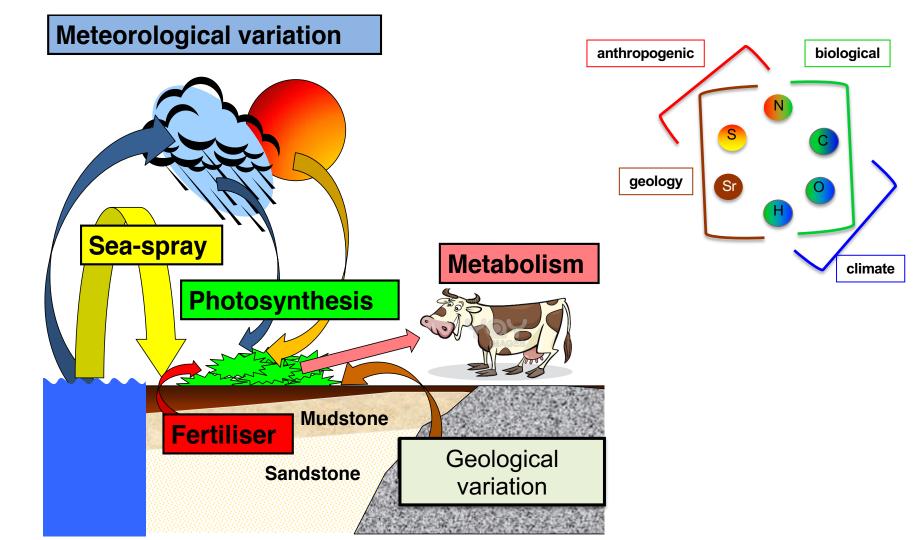
12

### Food control system

Overarching food control system needed

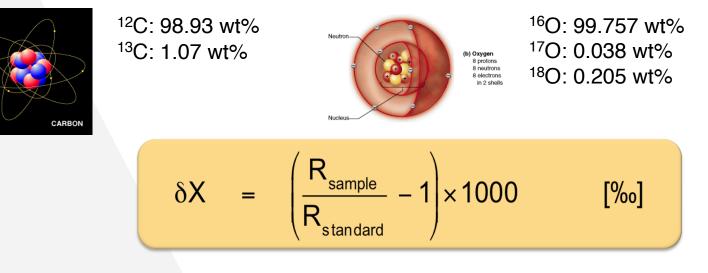
Traceability system


- labeling, radio-tagging
- good for passing information and tracking the packaging along the supply chain
- vulnerable to fraud

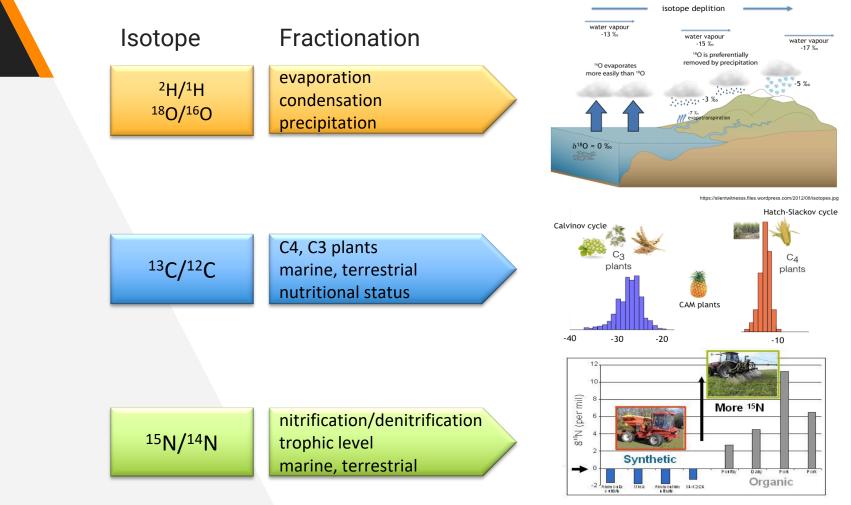

Robust analytical techniques for food origin or authenticity

Verify and support control system



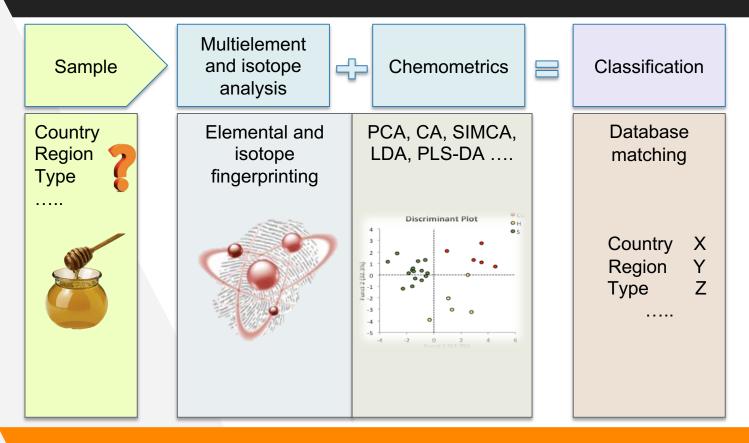




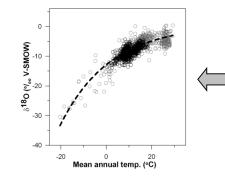


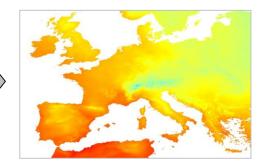

#### Stable isotopes




X = <sup>2</sup>H, <sup>13</sup>C, <sup>15</sup>N, <sup>18</sup>O, <sup>34</sup>S R = <sup>2</sup>H/<sup>1</sup>H, <sup>13</sup>C/<sup>12</sup>C, <sup>15</sup>N/<sup>14</sup>N, <sup>18</sup>O/<sup>16</sup>O, <sup>32</sup>S/<sup>34</sup>S Standard = V-SMOW, V-PDB, V-CDT, V-SMOC, AIR




http://www.gns.cri.nz/var/ezwebin\_site/storage/images/media/images/nitrogen/26338-1-eng-GB/nitrogen.jpg


#### Origin - elemental and isotopic fingerprinting

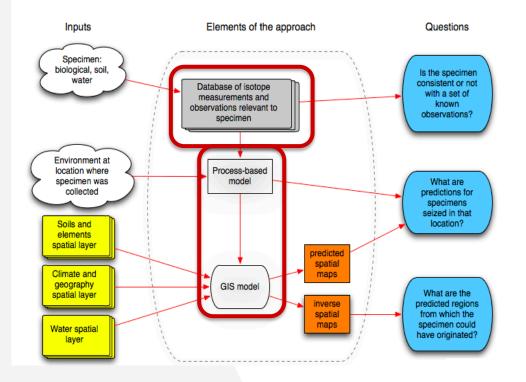


#### Authenticity and provenience

|   |             |       | scarge Toop Ha     |                  | 71812281       |                |                  |                   |                  |          |         |          |
|---|-------------|-------|--------------------|------------------|----------------|----------------|------------------|-------------------|------------------|----------|---------|----------|
|   |             |       |                    |                  |                |                | _                | _                 | _                | _        | _       | -        |
|   | nineral_sea |       | latabare (Access ) | 2000 file farm   |                |                |                  |                   |                  |          |         |          |
| F | Collector   | State | Food product       | Bottle           | Trace-Code     | LabNo Hydroise | Name             | Region            | Locality         | Langtude | Lattude | M        |
|   | FR          | UK    |                    |                  | 78/            | 198134         | Ashhoune         |                   |                  |          |         | -        |
|   | Hedroisstap |       | mineral water      | <b>PF</b> hottle | 7607-051200    | 199027         | Revina           | Exist Alts        | Pige (Sondrie)   |          |         | 10/2010  |
|   | FR          | LBC . | spring water       |                  | 7453040510     | 196909         | Green Valley     | Wales             | Brancen Baaccent |          |         | 10/20/0  |
|   | 12          | 116   | spring water       |                  | 7403-04404100  | 199812         | Renders Series V | Mode England      | Hardbertshire 1  |          |         | 12/01/0  |
|   | 12          | 187   | conversi senter    |                  | 74116          |                | Whir House Net   |                   | Wair House Se    |          |         |          |
|   | FFR         | Fr.   | minaral water      | Glas britle      | TAF Mad 6290   | 196766         | Datiar           |                   | Fat.de France i  |          |         | 10/20    |
|   | Hedroipotop | De    | reineral seator    | Clas both        | 765+5105125    |                |                  | To be been dealer |                  |          |         | 11/29/0  |
|   | JASMA       |       | minaral water      | PE bottle        | 74070052000    | 192245         | Line             |                   | (Unbria)         |          |         | 03/01/0  |
|   | Hechoisotop | De    | mineral water      |                  | T//Dekind05100 |                |                  | Nonliches Flac    |                  |          |         | 23/23/0  |
| F | FR          | UK .  | mineral water      |                  | 7/04/06/00     |                | Hadrian          |                   | Vilage Cross, N  |          |         | 10/01/0  |
|   | FR          | Sp    | mineral water      | Glas hottle      | 765oTex6100    | 996311         | Fontaide         | Tatoife           | La Orotava (Sar  | -16.6    | 28.3    |          |
|   | NURD        | le .  | mineral water      | PF hattle        | 760-54050900   | 19/772         | Kerry Sarina     | Indand            | Ballyfemiter Cri | -10.4    | 62.11   | 0.000    |
|   | Hedroigston | Po    | mineral water      | PE bottle        | 76/PoPer05113  | 167534         | Monthinag        | Arana             | Califas de Morel | .9.46    | 37.3    | 09/01/0  |
|   | Hedroisstap | Po    | spring water       | PF hittle        | 76PoPo05113    | 167582         | Ama de Nasco     |                   | Outekinho (Sao)  | .8.46    | 41.7    | 02/17/0  |
|   | Hedroisstap | Pn    | mineral water      |                  | 76PoPer(611]   | 167583         | Lunn             |                   | Lunn-Meaburds    | .8.32    | 40.3    | 0.024140 |
|   | FR          | 180   | minaral water      | PE hottle        | 7453-0466020   | 163639         | Glanpatrick      | baland            | County Topenar   | .8.16    | 62.6    | 07/20/0  |
|   | NUED        | la    | mineral water      | PT hottle        | 740/2/05/200   |                |                  |                   | Palas Short R    | .7.95    | 62.7    | 07/01/0  |
| - | NUED        | la .  | minaral water      | OF hottle        | 740-5-050000   |                | Baltrowan        | buland            | Balvpowar, Ner   | .27      | 62.9    | 02/200   |
| - | FD          | 1167  | spring water       | PE bottle        | 7#4.HCe65110   |                | Corrish series y | ComwallDevon      | Traklikek Farm   | -4.75    | 40.62   | 10/23/0  |
|   | 10          | 116   | company water      | PE bottle        | TALHCOCKOT     |                | Comish           | ConwallDeron      |                  | -4.62    |         | 12/16/0  |
| - | 10          | 11/   | mineral water      |                  | 7#UKSco2510    |                | Finner           |                   | Achmony Farm     | -4.67    |         | 07/10/0  |
| - | 10          | UK    | spring water       | PE bottle        | TALKCe05110    |                |                  | ComwallDeepe      |                  | -4.27    |         | 01010    |
|   | 50          | UK    | opring water       | PE bottle        | 760,60%,0507   |                | Fairbourne Sprie |                   | Charkstoke Mor   | -4.22    |         | 04/01/0  |
|   | FR          | UK    | mineral water      | PE bottle        | TALKScoM03     |                | Caledonian Sari  |                   | Lennadown Giz    | -4.2     |         | 02/01/0  |
|   | FR          | UK    | mineral water      | PE hattin        | 7658Sca0511    |                | Scottish Minera  |                   | Lernsuteue Gla   | -4.2     |         | 01000    |
|   | FR          | UK.   | serine water       | PE bittle        | 765KCx05110    |                |                  |                   | Langtes, Devor   | 42       |         | 09/29/0  |
|   | FR          | UK .  | sarina water       | Glas britle      | 765 K0640511   |                | Liariby Streng   | Wales             | Lianflyr         | 4.12     |         | 0109010  |
|   | FR          | LIK.  | minanal water      | Gias britle      | 74530540502    |                |                  |                   | Bethavia Llanor  | 4.08     |         | 00/100   |
|   | FR          | LIK.  | mineral water      | PE hottia        | 765,6340503    |                | Reprint Carries  |                   | Lincontent haf 1 | .3.97    |         | 0541.0   |
|   | 12          | LIK.  | mineral water      | PE bottle        | T#4.KSc0507    |                | Hishiand Spring  |                   | Highland Spring  | -3.77    |         | 00/01/0  |
|   | FR          | LIK.  | minaral water      | PE bette         | 7WUKSco0511    |                | Perthshire Mour  |                   | Highland Spring  | -3.77    |         | 0491.0   |






What an "authentic sample" means

What are the factors influencing the isotope variability: geographical origin, climatic conditions, soil pedology and geology, for animal products, the diet type any possible effects of processing technology

Large number of data (expensive) Regular updates (stability of the data) Origin is determined by comparing the data within a food to interpolated geo- climatic factors depicted in an isotopic map

Prediction of the data where no stable isotope data are available Large scale data might overlook regionality Annual/seasonal stability has to be proven

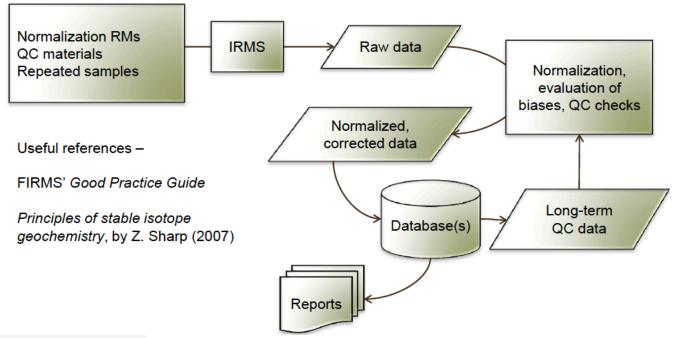
#### How is an isotope fingerprint interpreted?

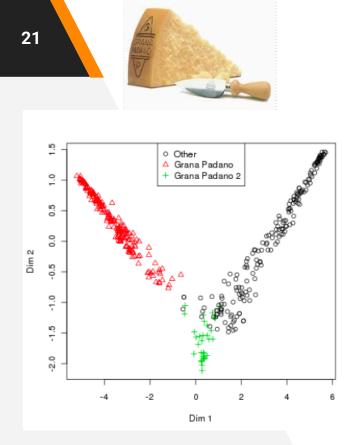


### Comparative applications

Are the isotope values of this scallop consistent with shellfish from Australia?

Are the isotope values of wines similar to others from the region?


### Predictive applications


What are the predicted isotope values of rice based on precipitation isotope values in Italy?

This olive oil doesn't match others from Italy. Where are the predicted regions where it may have originated?

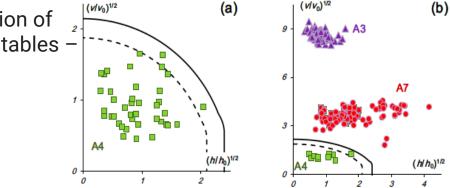
## A "good" database requires "good" data

Example laboratory Quality Assurance Program

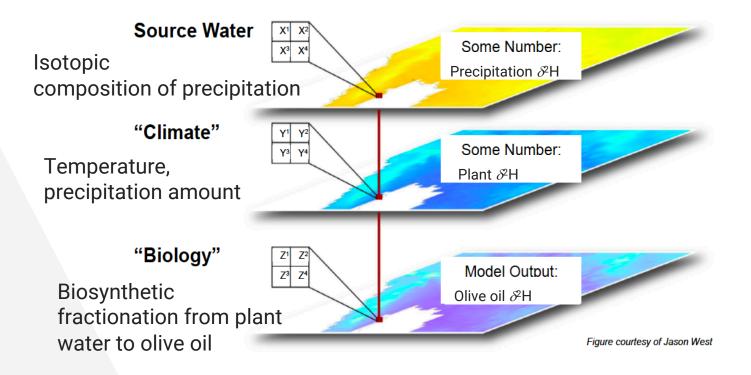




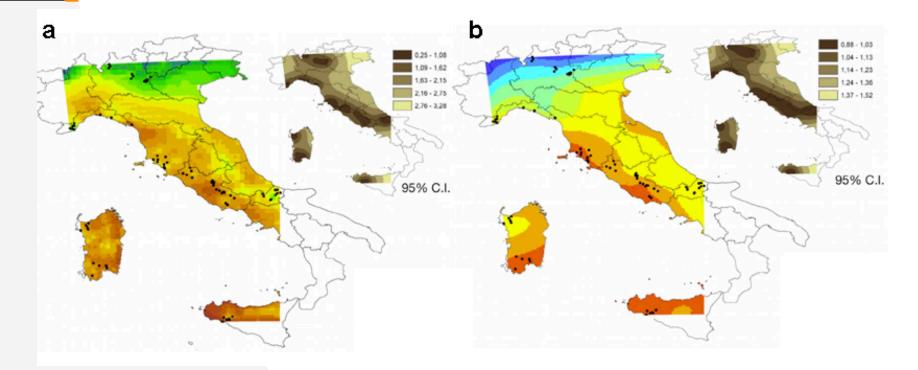
Observations (axes F1 and F2: 91,60 %)




#### Slovenian milk


Stable isotope data + elemental composition – LDA

Authentification of Amplodipine tables – DD-SIMCA


Random Forest Model (2011) for the traceability of Grana Padano cheese



### (Hypothetical) example – build an oil isoscape



## (Real) example – build an oil isoscape

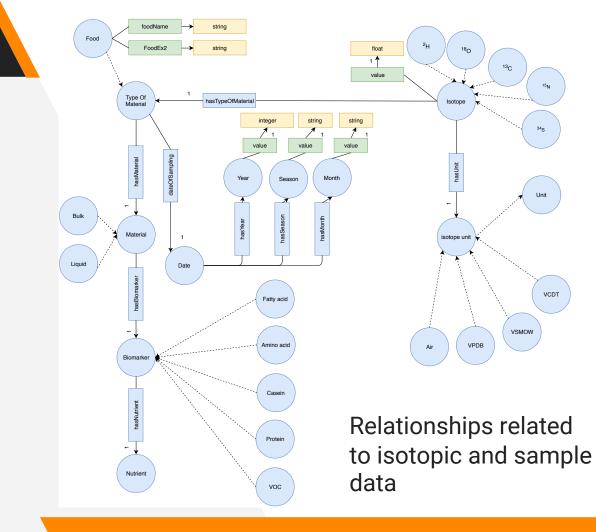


## 3. ISO-FOOD ontology isotopes used for food research

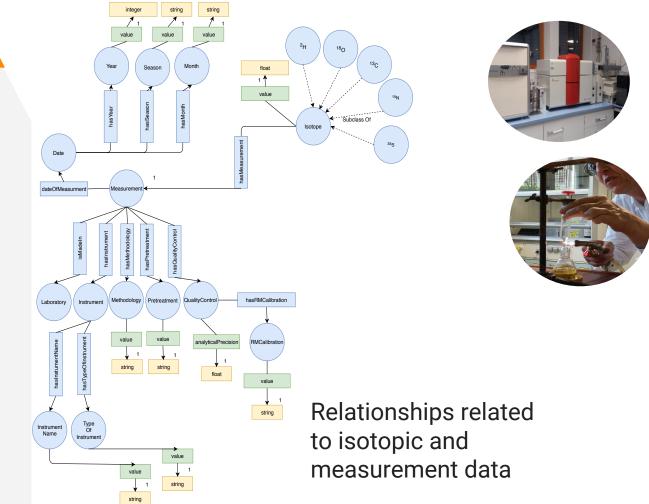
## 66

## Why we need a centralized repository for isotopic data

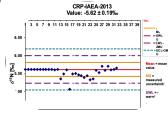
PNAS 114, 2997-3001, 2017


Food

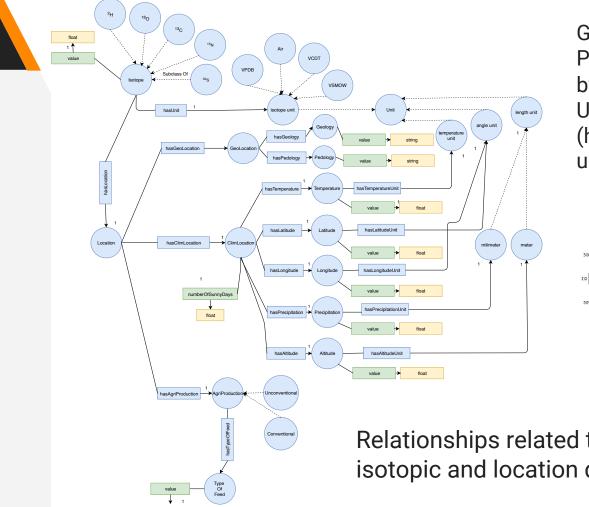
ERA Chai


Jonathan N. Pauli<sup>\*,1</sup>, Seth D. Newsome<sup>b</sup>, Joseph A. Cook<sup>c</sup>, Chris Harrod<sup>d</sup>, Shawn A. Steffan<sup>\*,f</sup>, Christopher J. O. Baker<sup>0</sup>, Merav Ben-David<sup>h</sup>, David Bloom<sup>i</sup>, Gabriel J. Bowen<sup>i</sup>, Thure E. Cerling<sup>j</sup>, Carla Cicero<sup>k</sup>, Craig Cook<sup>h</sup>, Michelle Dohm<sup>i</sup>, Prarthana S. Dharampal<sup>f</sup>, Gary Graves<sup>m,n</sup>, Robert Gropp<sup>o</sup>, Keith A. Hobson<sup>o</sup>, Chris Jordan<sup>9</sup>, Bruce MacFadden<sup>r</sup>, Suzanne Pilaar Birch<sup>s,t</sup>, Jorrit Poelen<sup>u</sup>, Sujoevan Ratnasingham<sup>v</sup>, Laura Russell<sup>i</sup>, Craig A. Stricker<sup>w</sup>, Mark D. Uhen<sup>\*</sup>, Christopher T. Yarnes<sup>y</sup>, and Brian Hayden<sup>\*</sup>

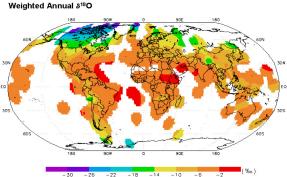
#### IsoBank - organize, consolidate, and share stable isotope data across disciplines










Number of analysis



Global Network of Isotopes in Precipitation (GNIP) managed by IAEA and data operating by University of Utah, USA (http://isomap.rcac.purdue.ed u:8080/gridsphere)



Relationships related to isotopic and location data

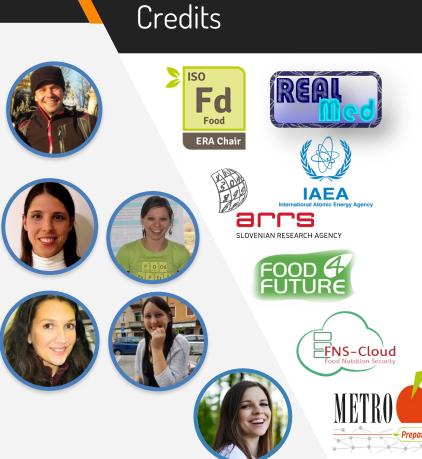
#### Potential users

#### FOOD BUSINESS OPERATORS





#### RESEARCH/ACADEMIC




#### POLICY MAKERS / FOOD INSPECTIONS & CONTROL



#### CONSUMERS / CITIZENS





## THANKS!

#### **Any questions?**

You can find me at nives.ogrinc@ijs.si