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We propose that a 2 month, 10 man study of artificial intelligence be carried out during the
summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to proceed on
the basis of the conjecture that every aspect of learning or any other feature of intelligence can in
principle be so precisely described that a machine can be made to simulate it. An attempt will be
made to find how to make machines use language, form abstractions and concepts, solve kinds of
problems now reserved for humans, and improve themselves. We think that a significant advance
can be made in one or more of these problems if a carefully selected group of scientists work on it
together for a summer.
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ImageNet Object-Recognition Competition

Train on 1.2 million human-labeled images

Test on SO0K images
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What Are These Machines Learning?

Alcorn, Michael A., et al. "Strike (with) a Pose: Neural Networks Are Easily Fooled by
Strange Poses of Familiar Objects." arXiv preprint arXiv:1811.11553 (2018).
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What Are These Machines Learning?

Alcorn, Michael A., et al. "Strike (with) a Pose: Neural Networks Are Easily Fooled by
Strange Poses of Familiar Objects." arXiv preprint arXiv:1811.11553 (2018).

fire truck 0.99 school bus 098  fireboat 0.98 bobsled 0.79



What Are These Machines Learning?
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Evtimov et al., “Robust Physical-World Attacks on Deep Learning
Models™, 2017
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BRIDGING THE

GENDER GAP

Biden says he's a 'bridge' to new 'generation of leaders’
while campaigning with Harris, Booker, Whitmer
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“Don’t burn your bridges”

(a) bridging oxygen

(b) non-bridging oxygen




“A concept is a package of analogies.”

—D. Hofstadter, Analogy as the Core of Cognition



How can we get machines to learn concepts

(rather than perceptual categories) and make

analogies?



Deep Learning Approaches
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“highly correlated with human intelligence.”
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Deep learning approaches

Zhou et al, 2020, “Solving Raven's Progressive Matrices
with Neural Networks”
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Zhou et al, 2020, “Solving Raven's Progressive Matrices
with Neural Networks™
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Deep learning approaches

Zhou et al, 2020, “Solving Raven's Progressive Matrices
with Neural Networks™

ResNet 50

[ 1x1conv,256 |

[ 1x1conv, 1024 |

[ 3x3conv,256 |

Adapted from Liu, Liu, & Zhang, 2019

Probability
distribution over

42,000 training examples (problems)  the 8 possible
14,000 test examples answers



. . https://github.com/WellyZhang/RAVEN
RAVENS dataset 1s generated using
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Results:

with Neural Networks”

Zhou et al, 2020, “Solving Raven's Progressive Matrices

Table 2. Testing accuracy of different models in supervised manner. Avg denotes the average accuracy of each model.

Method Avg  Center 2*2Grid 3*3Grid L-R U-D O-IC O0O-IG
LSTM 13.07 13.19 14.13 13.69 12.84 1235 12.15 12.99
WReN 14.69 13.09 28.62 28.27 749 634 838 10.56
CNN 3697 33.58 30.30 868.53 3043 4126 43.20 37.54
ResNet-18+MLP 5343 52.82 41.86 44.29 58.77 60.16 63.19 53.12
LSTM+DRT 13.96 14.29 15.08 14.09 13.79 1324 1399 13.29
WReN+DRT 1502 1538 23.26 29.51 6.99 843 893 12.35
CNN+DRT 3942 37.30 30.06 34.57 4549 4554 4593 37.54
ResNet-18+MLP+DRT 59.56 58.08 46.53 50.40 65.82 67.11 69.09 60.11
RseNet-18 (ours, w/o pre-train) 77.18  72.75 57.00 62.65 91.00 89.60 88.40 78.85
RseNet-50 (ours, w pre-train) 86.26 89.45 66.60 67.95 97.85 98.15 96.60 87.20
CoPINet 91.42 95.05 77.45 7885 99.10 99.65 98.50 91.35
Human 84.41 95.45 81.82 79.55 86.36 81.81 86.36 81.81




Bias in RAVENS dataset

(Hu et al, Hierarchical rule induction network for abstract visual reasoning)
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Bias in RAVENS dataset

(Hu et al, Hierarchical rule induction network for abstract visual reasoning)
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Many types of deep learning approaches for
Ravens-like problems

Wild Relation Network, Barrett et al. 2018

Disentangled Feature Representations, Steenbrugge et al. 2018
Attention Relation Network, Hahne et al. 2019

Contrastive Perceptual Inference Network, Zhang et al, 2019
Logic Embedding Network, Zheng et al., 2019

Multi-Layer Relation Network, Jahrens & Martinetz, 2020

Hierarchical Rule Induction Network, Hu et al., 2020
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Deep Learning Approaches
Limitations

Requires very large corpus of training examples. Need to
generate automatically. Makes NNs susceptible to shortcuts.

Trained networks are not transparent. What did they learn?

If goal 1s general humanlike abstraction abilities, it doesn’t
make sense to have to train on tens of thousands of examples.

The essence of abstraction and analogy is few-shot learning!
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Letter-String Analogies
(Hofstadter and Mitchell, 1995)

abc — abd e Jdealized “situations”, with

pqrs — ? obj.ects, relations, groups,
actions, events

abc — abd e Meant to be a tool for

ppqqrrss — ? exploring general issues of
abstraction and analogy-
making

abcd — dcba

srqp — ?

axxd — abcd
Xgxxx— ?
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Copycat Architecture

Concept network (Mitchell & Hofstadter, 1995, “The
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Copycat Architecture

Concept network

(Mitchell & Hofstadter, 1995, “The
Copycat project: A model of mental
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Copycat (Metacat) demo

Workspace

(Codelets run: 0)

Metacat Control Panel

Help Demos Windows Options Clear Memory

abc ->cba;ppqqrr->?  seed: 1426119692

] =
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Some important ideas from Copycat

 Modeling analogy-making—and other “high-level”
cognitive processes—as perception, where a representation
1s actively built up over time

* Perception unfolds dynamically, continually integrating
symbolic/subsymbolic and top down/bottom-up processes

e Continual integration of prior knowledge with bottom-up
perceptions and perceived context
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Copycat
Limitations

* Copycat’s architecture 1s too ad hoc
* Not clear how general the architecture 1s

 How to form new concepts beyond what is given in its
prior conceptual repertoire?
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How to make progress
on abstraction and analogy in AI?

* Need common suite of challenging tasks

* Advantage of idealized domains:

— We can be explicit about what prior knowledge and assumptions
are needed for each task domain.

— By avoiding language-based tasks, we can avoid
anthropomorphizing what a system has achieved.
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* Al methods should be evaluated on hidden human-created examples
that periodically change (no static evaluation “test sets™).

» Evaluation should be based on several factors, including:

accuracy on hidden examples

performance across different tasks (generality)

ability to generate (as opposed to simply recognize) solutions
ability to abstract with only a few examples

robustness to modifications in tasks

scalability to more complex examples of tasks



Thank you for listening!

Artificial
Intelligence

A Guide for
Thinking Humans
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