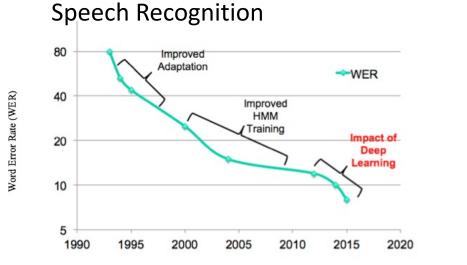


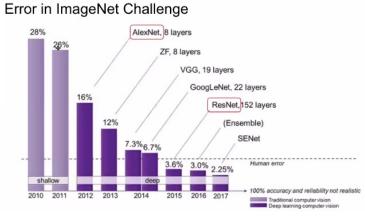
Deep learning for scientific computation

Max Welling Distinguished Scientist, Microsoft Research

The deep learning disruption



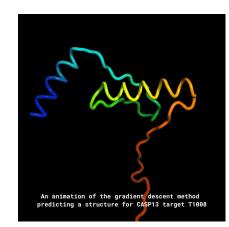
Source: Kartik Audhkhasi blog; https://minghsiehece.usc.edu/2017/04/the-machines-are-coming/



(Source: Angshuman Gosh | DLDC 2021)

Natural Language Models

Source: https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/



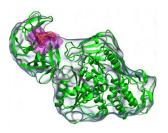
Protein Folding

https://deepmind.com/blog/article/AlphaFold-Using-Al-for-scientific-discovery

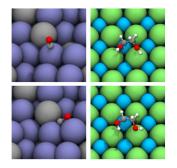
Molecules

Everything material is made of molecules*

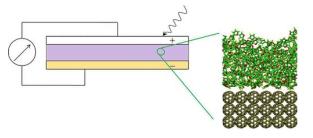
* Except 4 fundamental forces (electromagnetic force, gravity and strong & weak nuclear forces), and unless you break them up (plasma, quarks/leptons) Molecules are at the root of solving many of the health, environmental and climate challenges we are facing today.



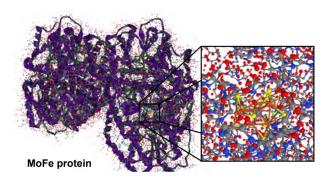
Drug discovery Markus Reiher et al. PNAS 2017;114:29:7555-7560



Catalyst design (e.g., fuel cells) Lowik Chanussot et al. ACS Catal. 2021, 11, 10, 6059–6072

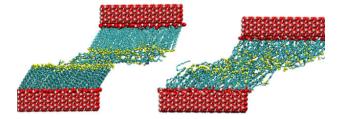


Photovoltaics S.Y Reddy et al. Synthetic Metals 162, 23, 2012, 2117-2124

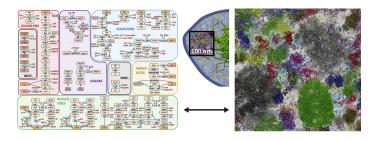


Nitrogen fixation

Shaher Bano Mirza et al. Journal of Molecular Graphics and Modelling 2016

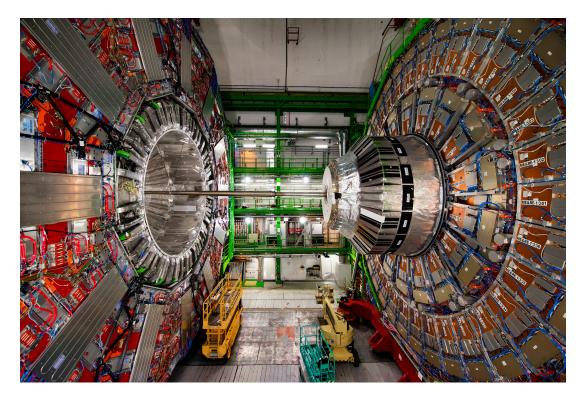


Tribology and lubricants James Ewen, Tribology Group, Imperial College London



Whole cell modelling

We need a new microscope



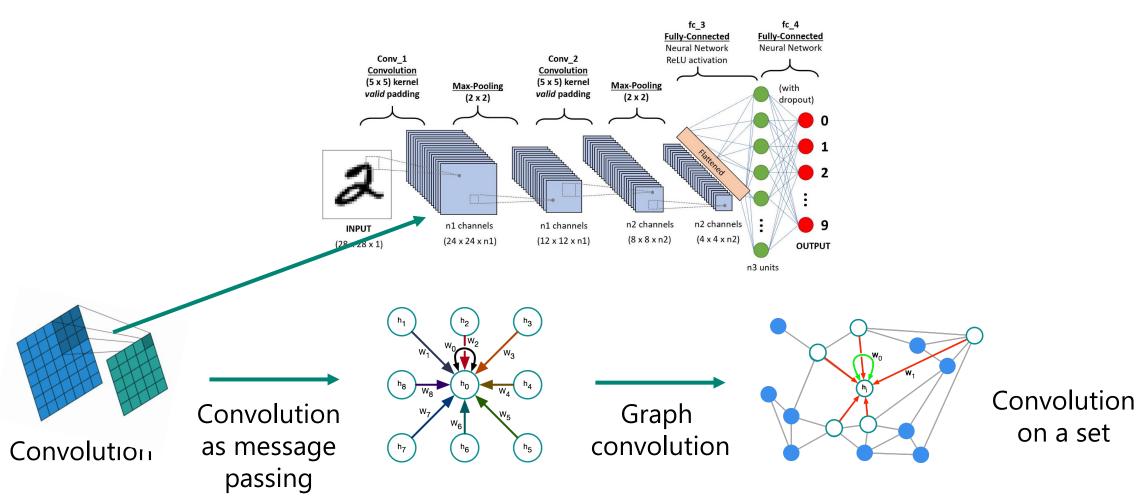
LHC: The microscope of the particle physicists

SKA: The telescope of the astronomers

The new microscope is computational

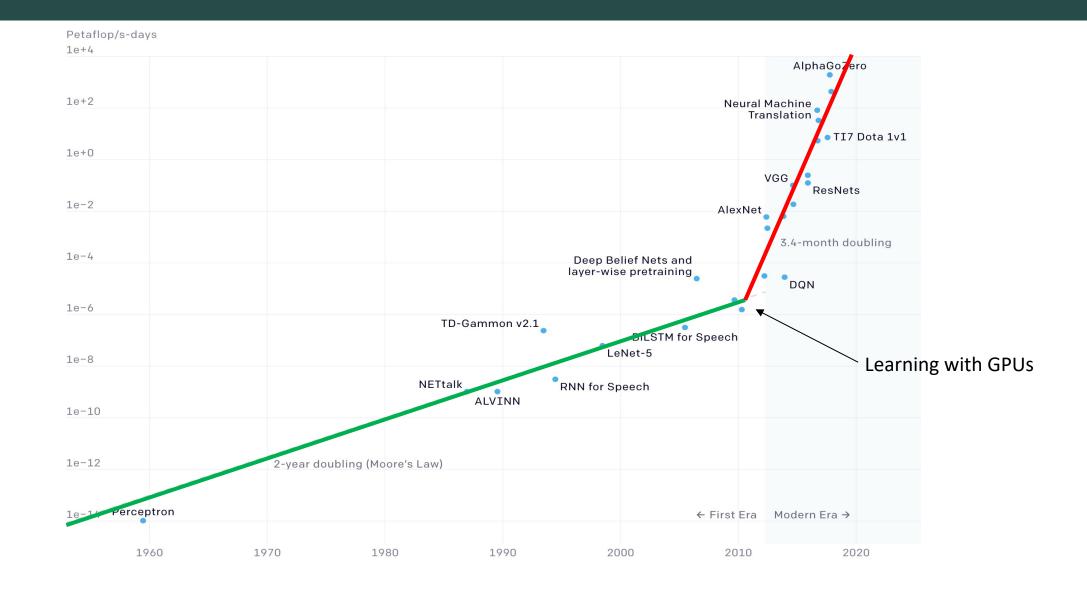
Large scale, self-learning simulations on modern supercomputers

Deep learning and GNNs

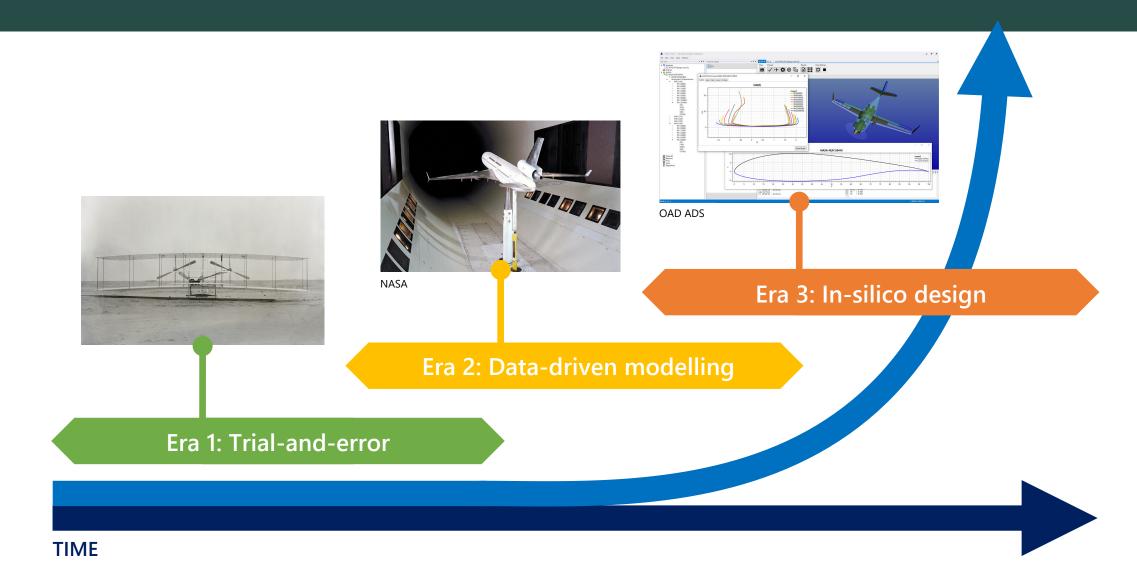


Convolutional Neural Network

Moore's Law for Deep Learning

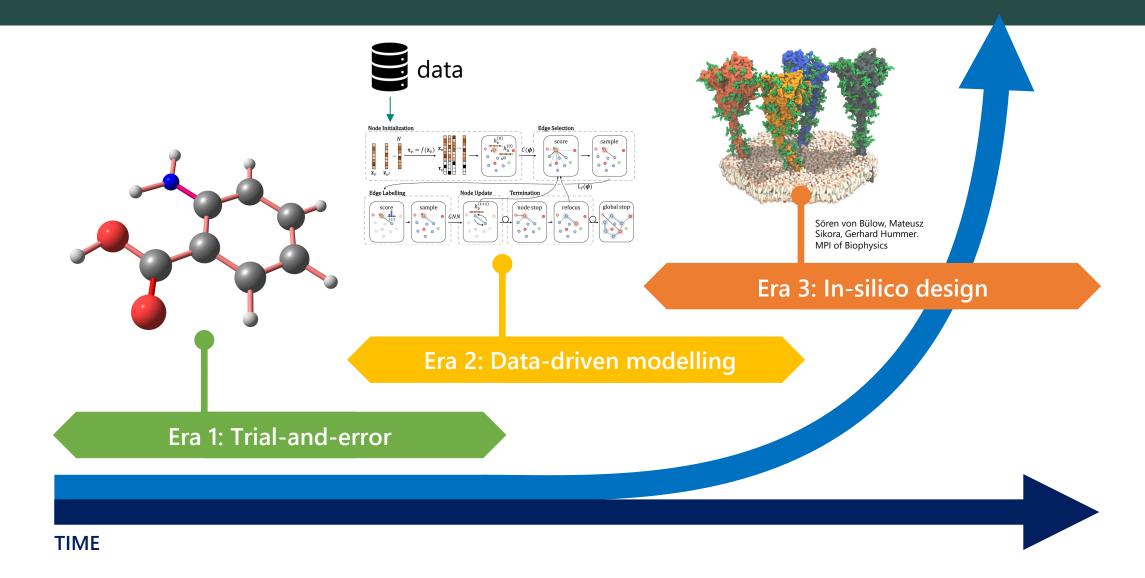


A new paradigm?

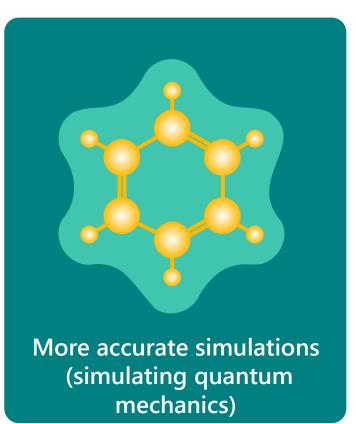


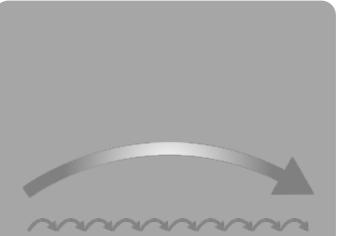
Molecules and materials design

COMPUTATIONAL COMPLEXITY

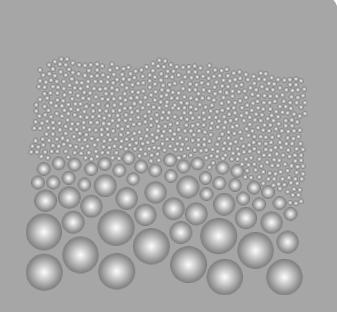


Three key challenges



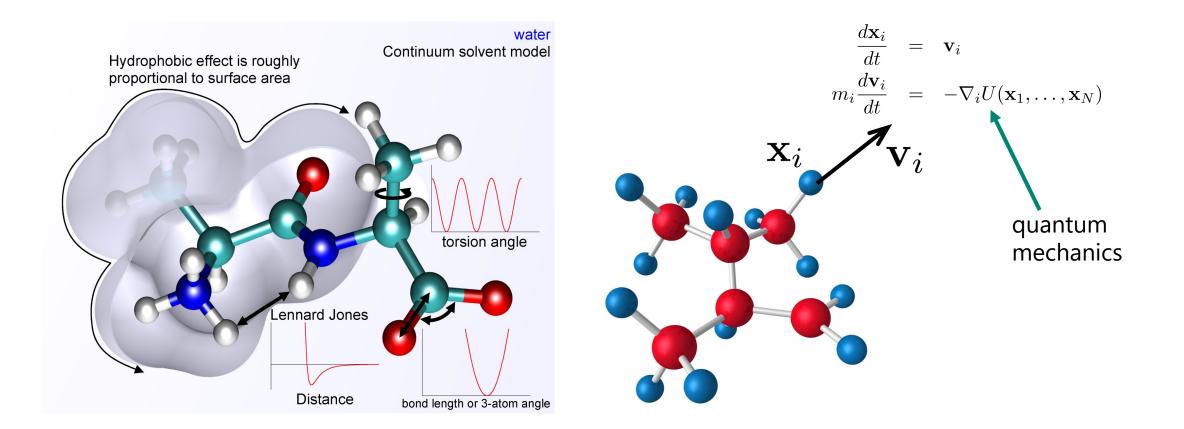


Faster simulations (from femtoseconds to microseconds)



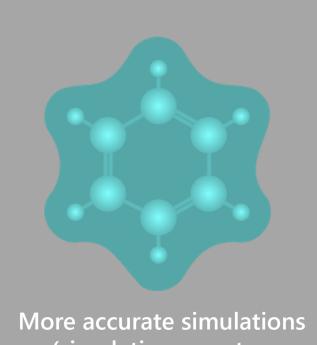
Scaling to large system sizes: billions of atoms (bacteria)

Simulating molecules

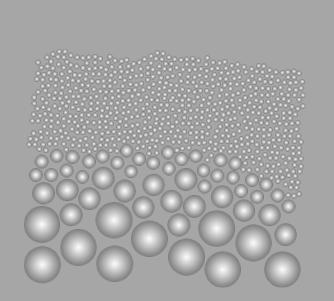


Opportunity: Use ML to learn forces on atoms due to electronic structure (usually computed though DFT)

Three key challenges

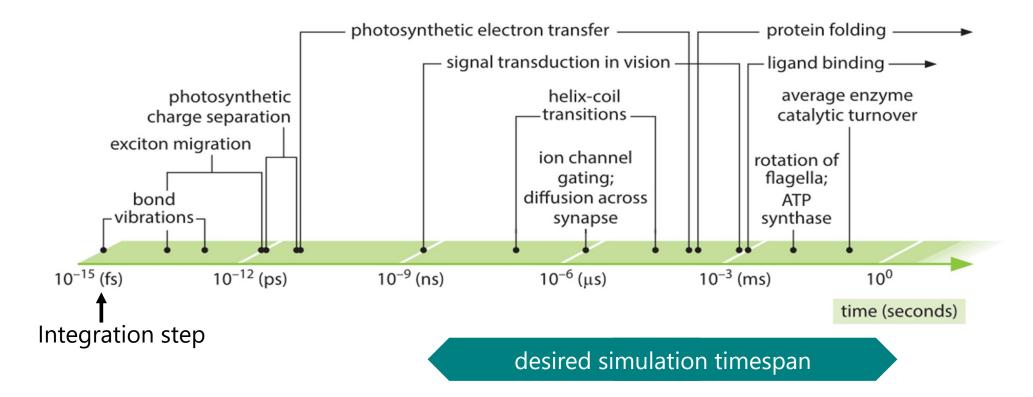


More accurate simulations (simulating quantum mechanics) Faster simulations (from femtoseconds to microseconds)



Scaling to large system sizes: billions of atoms (bacteria)

Curse of sequentiality



Simulations with current MD technology require 10⁶ to 10¹⁵ sequential steps. But: chips no longer become faster for sequential computation.

Figure from <u>"Cell Biology by the numbers"</u>

Opportunity: Use ML to increase the integration steps in molecular dynamics simulations.

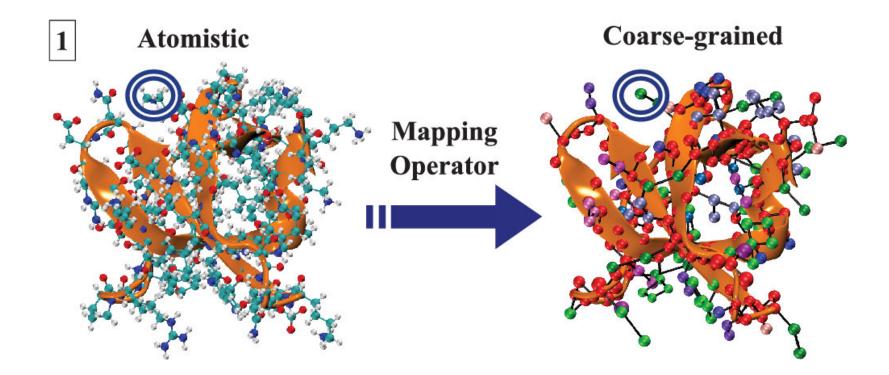
Three key challenges

More accurate simulations (simulating quantum mechanics)

Faster simulations (from femtoseconds to microseconds)

Larger simulations (from a dozen atoms to billions of atoms)

Coarse graining methods

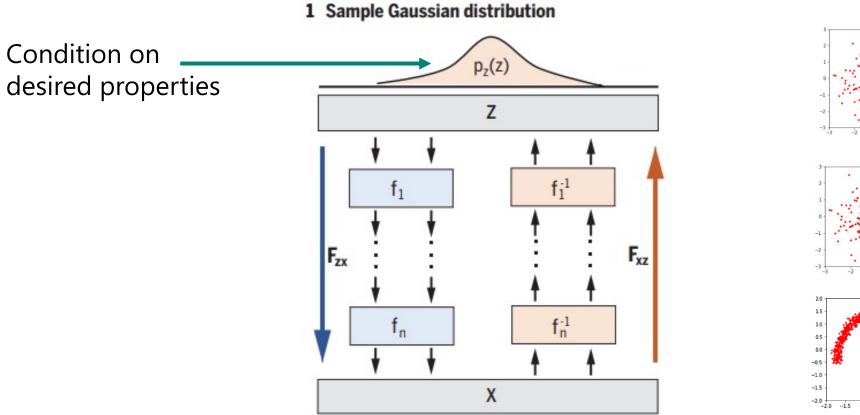


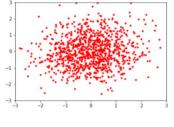
W.G. Noid, Perspective: Coarse-grained models for biomolecular systems

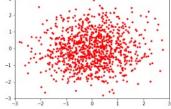
J. Chem. Phys. 139, 090901 (2013); https://doi.org/10.1063/1.4818908

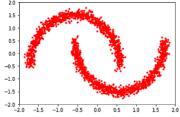
Opportunity: Use ML to learn to coarse grain

In silico molecule synthesis









Opportunity: Use ML to learn to generate molecules with prescribed properties

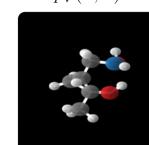
Molecule generation with equivariant GNNs

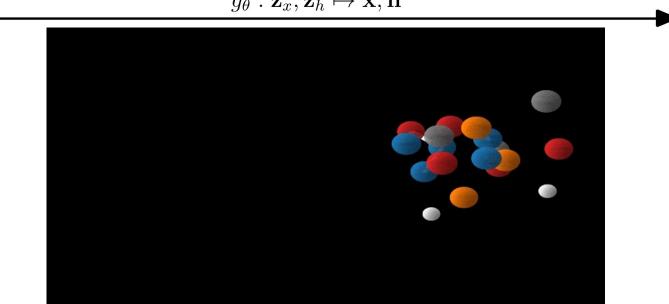
E(n) Equivariant Normalizing Flows

NeurIPS 2021 · Victor Garcia Satorras, Emiel Hoogeboom, Fabian B. Fuchs, Ingmar Posner, Max Welling

 $p_V(\mathbf{x}, \mathbf{h})$

 $g_{\theta}: \mathbf{z}_x, \mathbf{z}_h \mapsto \mathbf{x}, \mathbf{h}$





Molecule generation

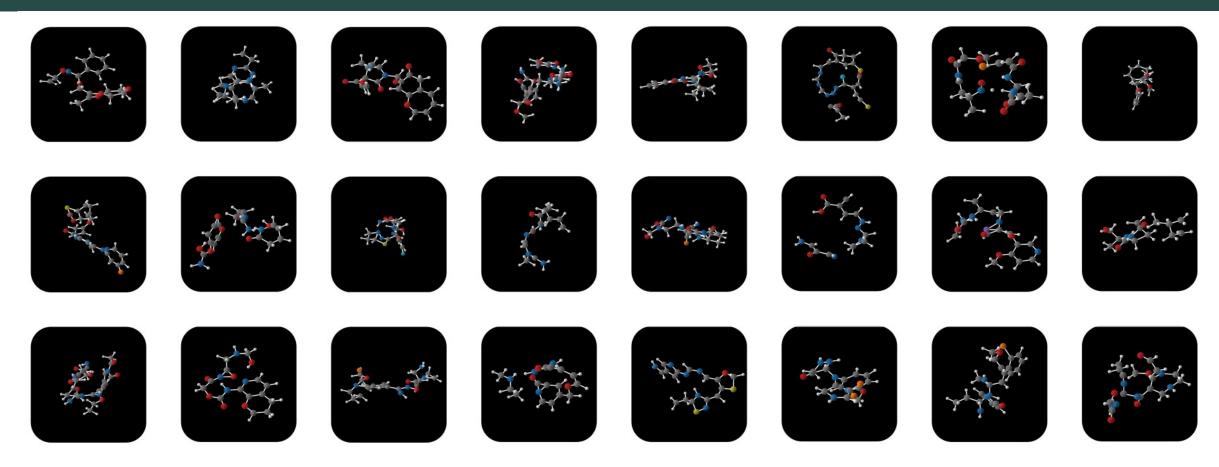
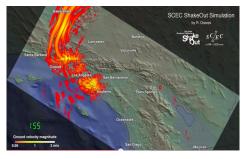


Figure 7. Random samples taken from the EDM trained on geom drugs.

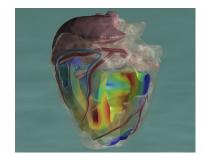
Equivariant Diffusion for Molecule Generation in 3D

Partial differential equations

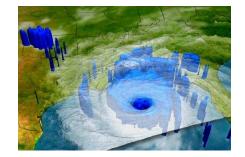
PDEs and ODEs are used throughout the sciences to describe the evolution of systems of interest.



Earthquakes

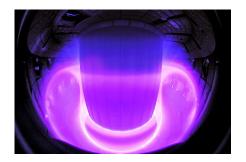


Heart dynamics

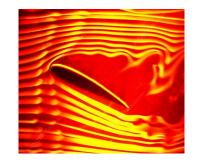


Weather prediction

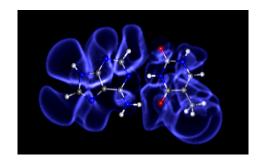
Galaxy collisions



Plasma physics



Airplane design

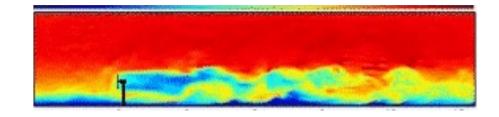


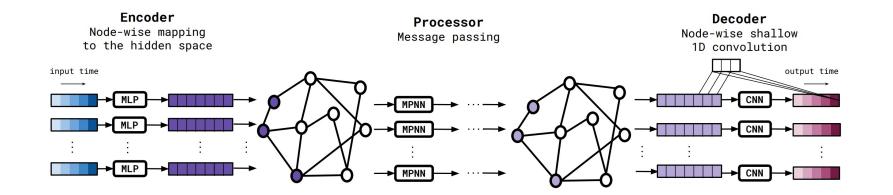
Electronic structure

Tumor development

Solving PDEs with GNNs

- Accurate numerical integration is slow and tedious.
- Deep learning shows great promise for solving PDEs.





MESSAGE PASSING NEURAL PDE SOLVERS

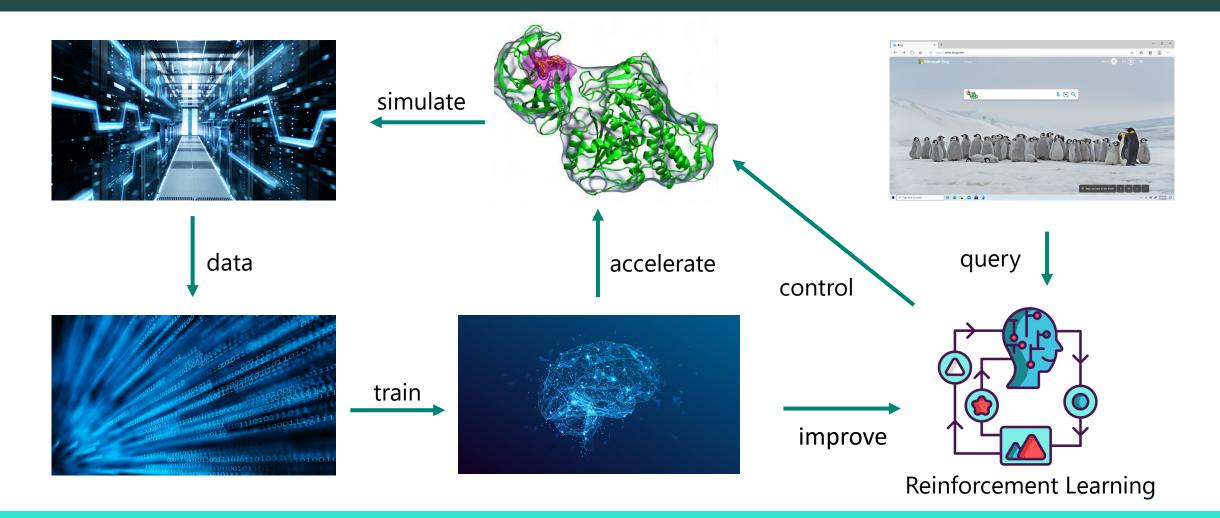
Johannes Brandstetter* University of Amsterdam Johannes Kepler University Linz brandstetter@ml.jku.at

Daniel E. Worrall* Qualcomm AI Research[†] dworrall@qti.qualcomm.com

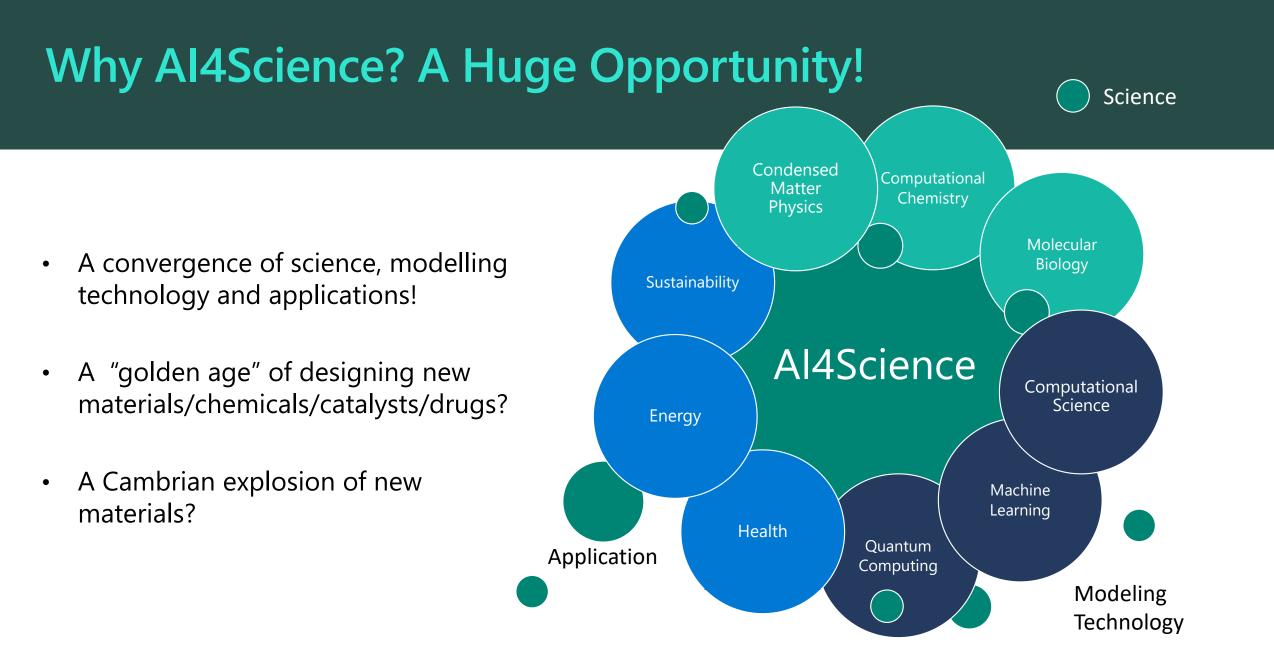
Max Welling University of Amsterdam m.welling@uva.nl

Opportunity: Use ML to learn to numerically solve PDEs.

A search engine for molecules?



Opportunity: Build a search engine for chemical space



Microsoft Research Amsterdam

Thank you for your attention. Questions?