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Word Error Rate (WER)

The deep learning disruption
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Source: Kartik Audhkhasi blog; https://minghsiehece.usc.edu/2017/04/the-machines-are-coming/

Error in ImageNet Challenge
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(Source: Angshuman Gosh | DLDC 2021)

Natural Language Models
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Source: https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-
megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

Protein Folding

https://deepmind.com/blog/article/AlphaFold-
Using-Al-for-scientific-discovery

An animation of the gradient, descent method
predicting a structure for CASP13 target T1008



https://www.linkedin.com/in/drangshu/

Molecules

Everything material is made of molecules*
* Except 4 fundamental forces (electromagnetic force, gravity and strong & weak nuclear forces), and unless you break them up (plasma, quarks/leptons)
Molecules are at the root of solving many of the health, environmental and climate challenges we are facing today.
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Drug discovery Photovoltaics Tribology and lubricants
Markus Reiher et al. PNAS 2017;114:29:7555-7560 S.Y Reddy et al. Synthetic Metals 162, 23, 2012, 2117-2124 James Ewen, Tribology Group, Imperial College London
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Catalyst design (e.g., fuel cells) Nitrogen fixation Whole cell modelling
Lowik Chanussot et al. ACS Catal. 2021, 11, 10, 6059-6072

Shaher Bano Mirza et al. Journal of Molecular Graphics and Modelling 2016 Michael Feig et al. Mol Graph Model. 2015 May ; 58: 1-9



We need a new microscope

LHC: The microscope of the particle physicists SKA: The telescope of the astronomers



The new microscope is computational

Large scale, self-learning simulations
on modern supercomputers




Deep learning and GNNs

Convolutional Neural Network
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Moore's Law for Deep Learning
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A new paradig m? COMPUTATIONAL

COMPLEXITY
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Era 3: In-silico design

Era 1: Trial-and-error

TIME



Molecules and materials design COMPUTATIONAL

COMPLEXITY
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More accurate simulations
(simulating quantum
mechanics)

Faster simulations
(from femtoseconds to
microseconds)

Scaling to large system sizes:
billions of atoms (bacteria)




Simulating molecules

water

Hydrophobic effect is roughly G 0 YE. e,

proportional to surface area

quantum
mechanics

Distance bond length or 3-atom angle

Opportunity: Use ML to learn forces on atoms due to electronic structure
(usually computed though DFT)



More accurate SimUIationS Faster SimUIationS Scaling to Iarge System sizes:
(simulating quantum (from femtoseconds to billions of atoms (bacteria)
mechanics) microseconds)




Curse of sequentiality

——— photosynthetic electron transfer protein folding ——»
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Simulations with current MD technology require 10°to 10'> sequential steps.
But: chips no longer become faster for sequential computation.

Figure from “Cell Biology by the numbers”

Opportunity: Use ML to increase the integration steps in molecular dynamics simulations.


http://book.bionumbers.org/rates-and-duration-introduction/

More accurate simulations Faster simulations Larger simulations
(simulating quantum (from femtoseconds to (from a dozen atoms to
mechanics) microseconds) billions of atoms)




Coarse graining methods

1 Atomistic Coarse-grained

Mapping
Operator

W.G. Noid, Perspective: Coarse-grained models for biomolecular systems

J. Chem. Phys. 139, 090901 (2013); https://doi.org/10.1063/1.4818908

Opportunity: Use ML to learn to coarse grain



In silico molecule synthesis

1 Sample Gaussian distribution

Coqdltlon on _ /{)ZK
desired properties

Z
v b A
fy fit
v b
Fix : Fe
v b
£ fe
S 0§ § w
X

Opportunity: Use ML to learn to generate molecules with prescribed properties



Molecule generation with equivariant GNNs

E(n) Equivariant Normalizing Flows

NeurlPS 2021 - Victor Garcia Satorras, Emiel Hoogeboom, Fabian B. Fuchs, Ingmar Posner, Max Welling

pv(x,h)

Gy : Zz,Zp — X, 0




Molecule generation

Figure 7. Random samples taken from the EDM trained on geom drugs.

Equivariant Diffusion for Molecule Generation in 3D

Emiel Hoogeboom ! Victor Garcia Satorras”! Clément Vignac*? Max Welling |



Partial differential equations

PDEs and ODEs are used throughout the sciences to describe the evolution of systems of interest.

Galaxy collisions

Plasma physics Airplane design Electronic structure Tumor development



Solving PDEs with GNNs

Accurate numerical integration is slow and tedious.

Deep learning shows great promise for solving PDEs.

Encoder Processor Decoder
Node-wise mapping Message passing Node-wise shallow
to the hidden space 1D convolution

input time | l output time
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Opportunity: Use ML to learn to numerically solve PDEs.

MESSAGE PASSING NEURAL PDE SOLVERS

Johannes Brandstetter* Daniel E. Worrall*

University of Amsterdam Qualcomm Al Research’

Johannes Kepler University Linz dworra 11@gti.qualcomm.com
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Max Welling
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m.welling@uva.nl



A search engine for molecules?

accelerate

control

improve

Reinforcement Learning

Opportunity: Build a search engine for chemical space
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A convergence of science, modelling Biology
. . Sustainability
technology and applications!

- A "golden age” of designing new Al4Science Computational
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