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Generalization



Generalization

Training (Seen) Data Unseen Data
Can we be more precise?



Statistical Definition of Generalization

Generalization = 
works on iid data

Training (Seen) Data

Distribution ~ D

~ DUnseen Data



Is that comprehensive enough?
Training (Seen) Data

Distribution ~ D

Unseen Data
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How do neural networks generalize?



Humans rely heavily on memory when learning, e.g. learning new vocabulary, or visual 
directions 

In Deep Learning: 
• Generalization through Memorization: Nearest Neighbor Language Models (Khandelwal 

et al), ICLR 2020 
• What Neural Networks Memorize and Why (Feldman and Zhang), NeurIPS, 2020 

• Memorization of rare instances could be helpful for generalization

Memorization is one way neural networks can generalize….

TRAIN TEST IMAGES



Methods of Generalization

Remembering 
rare examples

K-nearest 
neighbors IID Data

Out of 
domain

Abstract 
reasoning

Questions and Challenges
• How do neural networks typically generalize?
• Can we differentiate between simple generalization and sophisticated generalization?
• What are the limits of neural network generalization?

Naive 
memorization

SophisticatedSimple



Pointer Value Retrieval 
• New family of tasks to understand neural network generalization
• Varying types of input data

• Our paper: image and vector inputs
• Can control and vary task difficulty
• All tasks have a simple pointer-value reasoning rule:

• A specific position of the input acts as a pointer
• The value of the pointer provides instruction on which other position(s) of the 

input to look at
• The said values are aggregated to produce the final output.



Visual Inputs
Pointer Value Retrieval

Block Style Sequential

Label 6Label 9 Label 3

Label 2 Label 8



Visual (Block Style) Input
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Decouple vision and generalization via reasoning? 



Vector Inputs
Pointer Value Retrieval
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Varying Task Complexity
Pointer Value Retrieval

• Distribution shift between training and test data
• Some values don’t appear at some positions
• Call this: Holdout Shift

• Increase functional complexity
• Mapping from value to label is more complex
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Visual (Block Style) Input
Pointer Value Retrieval
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Holdout ShiftTraining Test



IID Train/Test with ResNet
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Holdout Shift
Generalization on PVR Block Task

Different Distribution 
Train/Test with ResNet

A
C

C
U

R
A

C
Y

1.0

0.8

0.6

0.4

0.2

0.0

TRAIN STEP
0 2000 4000 6000 8000 10000 12000

Different Distribution 
Train/Test with VGG

1.0

0.8

0.6

0.4

0.2

0.0

TRAIN STEP
0 2000 4000 6000 8000 10000 12000



Raw logit values for test examples for pointer digit 0

The model has learned to assign very low logits to 
labels 1-3, exactly the values left out from the top 
right position during training (which pointer 0 points 
to). Although all test examples have only values 1-3 
in this position, this correlation is ingrained in the 
network, leading to systematic errors.

Comparison: logits from models trained in the IID 
setting, where we observe no correlations between 
pointer digit and label values.
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Raw logit values for test examples for pointer digit 0

The model has learned to assign very low logits to 
labels 1-3, exactly the values left out from the top 
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in this position, this correlation is ingrained in the 
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On this task, the neural network did not generalize 
as expected, by learning the rule. 

But it did pay attention to simple patterns in the 
data (correlation between pointer digit and values.) 

Is this memorization? Or reasoning?



Vector Inputs and Varying Difficulty

How to avoid simple data patterns and distinguish  
between memorization and reasoning?

Increase task difficulty through  
functional complexity (with vectorized inputs)



Vector Inputs and Varying Difficulty
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Vector Inputs and Varying Difficulty

3 5 0 2 2 3 7 9 0 4 8

Pointer

3 5 0 2 2 3 7 9 0 4 8

Pointer Neighbors

Aggregated Label

Neighborhood size 
indicates the complexity
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Vector Inputs and Varying Difficulty

3 5 0 2 2 3 7 9 0 4 8

Pointer
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Pointer

Aggregated Label

by mod_sum
0 + 2 + 2 + 3 + 7 + 9 = 3 (mod 10) 

(alternatives) maj_vote, min, max, median…

Neighborhood size 
indicates the complexityNeighbors



Performance of PVR Tasks with different Complexity

The training (top) and test (bottom) accuracy of PVR tasks with 
increasing functional complexity and different training set sizes.



Evaluating Different Aggregating Functions for PVR

Test performance for different aggregation functions across varying 
dataset size and functional complexity. The empirical results support the 
intuitive observation that mod_sum is the most challenging.



Noise Sensitivity of Boolean Functions

– Using Noise sensitivity to quantify the complexity of the tasks.
– Intuitively, measures how sensitive the outcome of a boolean function f 
to random perturbations with probability 0 < 𝛿 < 1

– Noise sensitivity of f at 𝛿 is defined to be the probability that f(x) ≠ f(y) 
when x is uniform random bits and y is formed from x by reversing each 
bit independently with probability 𝛿.

– We encode each digit of the input vector with 4 bits.



Noise Sensitivity of Boolean Functions

Noise sensitivity analysis confirms that the complexity of 
PVR tasks with mod_sum increases with neighbor sizes.
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Model Architecture and Inductive Biases

Transformers and MLP-Mixers have explicit notion of tokens and the 
interaction of tokens, and have better sample complexity (requires fewer 
training examples to generalize) than MLPs.
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Training with Massive Dataset Sizes
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To test the limits of neural network learning, we look at training with massive 
dataset sizes, up to 5x10^7:  continuing performance improvements as 
dataset size is increased, solving more and more complex tasks.
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Does high test accuracy correspond to learning reasoning?

num-neighbors = 1

TRAINING 
SET SIZE

103 105 107

NUM-NEIGHBORS = 1

We train neural networks on PVR tasks 
with complexity m=1, and held out various 
number of permutations of (0,1) in the 
value window.

We test on inputs where the value window 
contains the value (0,1), while all other 
digits and the pointer are random.

Note with enough training data, the 
networks are able to correctly predict those 
test examples even though all the 
combinations of (0,1) are held out during 
training.



Does high test accuracy correspond to learning reasoning?

We train neural networks on PVR tasks 
with complexity m=2, and held out various 
number of permutations of (0,1,2) in the 
value window.

We test on inputs where the value window 
contains the value (0,1,2), while all other 
digits and the pointer are random.

We observe similar results with m=2, even 
though sometimes learning could be a bit 
unstable. But when training succeeds, the 
network could generalize well even with 
complete held-out.

TRAINING 
SET SIZE

103 105 107

NUM-NEIGHBORS = 2



Can neural networks learn to reason?
Conclusion

• Generalization in machine learning is often thought of in terms of IID data
• But there are a spectrum of possible sub-methods, from memorizing (rare examples), k-NNs, 

IID generalization, to out-of-domain generalization and reasoning
• There is an open question on how much neural networks are prone to similarity/co-occurrence 

methods vs abstraction / reasoning based methods

• We introduced the (Visual) Index Value Retrieval Tasks to study this
• Out-of-domain visual task
• Family of logical reasoning tasks of increasing complexity

• In both settings, we observe that neural networks fail at tasks that require greater abstraction, 
suggesting reliance on simpler similarity methods in learning

• We are investigating this further to pinpoint whether different reasoning elements are learned.
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