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Wait… are you talking about Learning New 
Physical Laws?



No, this is not yet Artificial General Intelligence talk.



Can we derive the physical law that  
governs the Universe?



How about this one?

Battaglia et al., 2016, NeurIPS



What is the physical law that governs this system?

Battaglia et al., 2016, NeurIPS



Convolutional Neural Net? Um… not really.

• We know that we can deal with images, 
cubes of images that you can convolve 
over and send them along layers of NN. 


• But for the problems we talked about 
earlier, there are no obvious convolution to 
do that conserves information. 


• We cannot simply convolve over these 
balls bouncing within 4 walls and expect 
that we will be able to retain all information. 


• So what do we do? 
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A graph?  
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over and send them along layers of NN. 
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earlier, there are no obvious convolution to 
do that conserves information. 


• We cannot simply convolve over these 
balls bouncing within 4 walls and expect 
that we will be able to retain all information. 


• So what do we do? 

A graph is a natural way to represent 
entities and their relations!
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A lot of physical laws involve n-body where n>=2
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Introducing Graphical Network



Edge function 
• Compute “message” from 

node and edge attributes 
associated with an edge

A Variant of Graphical Network: Interaction Network (Battaglia et al., 2016, NeurIPS)



Edge function 
• Compute “message” from 

node and edge attributes 
associated with an edge

Node function 
• Update node info from 

previous node state and 
aggregated “messages”

A Variant of Graphical Network: Interaction Network (Battaglia et al., 2016, NeurIPS)



Edge function 
• Compute “message” from 

node and edge attributes 
associated with an edge

Node function 
• Update node info from 

previous node state and 
aggregated “messages”

t0 t1

Trained to predict node states 

at t1 from states at t0

A Variant of Graphical Network: Interaction Network (Battaglia et al., 2016, NeurIPS)



Edges: gravitational forces Edges: springs and rigid 

collisions

What we are doing today? Learn to simulate and  
find the force laws of the following systems

Setup:


• 1/r, 1/(r2) force in 2D for 3-body 


• 1/(r2) force in 3D for 3-body


• string with 1/(r2) force in 2D 


• 100,000 simulations each


• 1000 time-steps each

Cranmer, Xiu, Battaglia, SH, 2019 NeurIPS ML4PS



Input :  A single time-step of   
3 planets interacting with each other at t

Output:  A single time-step of   
3 planets interacting with each other at t’ 

Machine Learning Model 

Cranmer, Xiu, Battaglia, SH, 2019 NeurIPS ML4PS



Cranmer, Xiu, Battaglia, SH, 2019 NeurIPS ML4PS



• For simplicity, we skip 
the global property 
here


• And the edges have no 
special attributes

Cranmer, Xiu, Battaglia, SH, 2019 NeurIPS ML4PS



• We have nodes (with 
position as a function 
of time, they are all of 
same mass)


• GN process the graphs 
first by computing all 
the pair-wise 
interactions (aka. 
messages) between 
nodes, with a message 
function. 

Cranmer, Xiu, Battaglia, SH, 2019 NeurIPS ML4PS



• Then we calculate the 
summed messages on 
the incident node


• And update the node 


• So what does this do?


• ek’ can be learned to 
be the relevant forces 
between the nodes! 

Cranmer, Xiu, Battaglia, SH, 2019 NeurIPS ML4PS



• Now you can predict 
the node attribute of 
next time-step


• You backpropagate to 
find the best weights


• Loss function: a 
function of the node 
attributes

Cranmer, Xiu, Battaglia, SH, 2019 NeurIPS ML4PS
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Outcome? We are able to predict the next steps!

Battaglia et al., 2016, NeurIPS
Cranmer, Xiu, Battaglia, SH, 2019 NeurIPS ML4PS



• What is more about this 
paper? 

• We use symbolic regression to 
learn the forces between the 
nodes. 


• Namely, ek’ can be learned to 
be the relevant forces between 
the nodes! 

Cranmer, Xiu, Battaglia, SH, 2019 NeurIPS ML4PS
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Edges: gravitational forces Edges: springs and rigid 

collisions

Did we learn force laws of the following systems?

Setup:


• 1/r, 1/(r2) force in 2D for 3-body 


• 1/(r2) force in 3D for 3-body


• string with 1/(r2) force in 2D 


• 100,000 simulations each


• 1000 time-steps each

Cranmer, Xiu, Battaglia, SH, 2019 NeurIPS ML4PS



Yes we can!

Cranmer, Xiu, Battaglia, SH, 2019 NeurIPS ML4PS
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Even better: “Zero shot” generalization to larger systems

Battaglia et al., 2016, NeurIPS
Cranmer, Xiu, Battaglia, SH, 2019 NeurIPS ML4PS



And the generalization works better  
if you limit the dimension of the message passing

Cranmer, Xiu, Battaglia, SH, 2019 NeurIPS ML4PS



Other examples of what GN can do: Predicting the invisible element 

Santoro et al., 2017, NeurIPS

Predict invisible springs in a mass-spring system

Input Model True



Santoro et al., 2017, NeurIPS

Predict invisible springs in a mass-spring system

Input Model True

Generalizes to point-light walkers

Other examples of what GN can do: Predicting the invisible element 



Conclusion

• It seems like it can learn from a set of simulations and generate more of the same without 
running the simulations again. 


• The model seems to generalize well to larger N systems. Why?


• We have found ways to combine this with symbolic regression to find the physical rules that 
govern the forces between the nodes. Neural Programming Synthesis maybe even cooler?


• We includes an inductive bias in the message passing and this helps find the physical laws 
a lot faster than before.


• The generalization works for even larger N when this inductive bias is included!


• Graph Networks Rocks! Talk to Danilo who is here *who knows way more about GNN than 
me*! 
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Predict invisible springs in a mass-spring system

Input Model True

Generalizes to point-light walkers

Other examples of what GN can do: Predicting the invisible element 



Other examples of what GN can do 
Representing the actuated system as a graph

Representing physical system as a graph:


• Nodes ~ Bodies


• Edges ~ Joints


• Global properties

Sanchez-Gonzalez et al., 2018, ICML




