EHzürich

Energy-Efficient Tiny Machine Learning at the Edge for Next Generation of Smart Sensors

Dr. Michele Magno

Credits: Tommaso Polonelli, Jonas Erb, Moritz Scherer, Philipp Mayer, Manuel Eggimann, Luigi Piccinelli, Prof. Dr. Luca Benini,

D-ITET Center for Project-Based Learning, Integrated Systems Laboratory, ETH Zürich

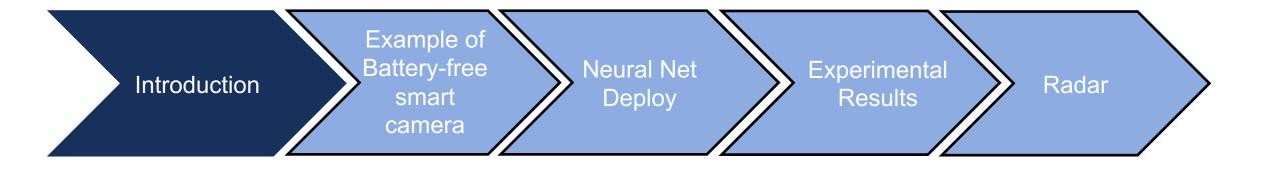
Michele Magno

Dr. Magno is a senior scientist and head of the Project-based Learning Centre at ETH Zurich.

Dr. Magno is a Senior Member of IEEE, the finalist of ETH Spark Award 2018, and a recipient of many other awards and grants. His background is in computer sciences and electrical engineering.

ETH zürich

Overview



ETHzürich

Introduction

- Internet of Things (IoT)
 - Variety of sensors
 - Connected to cloud (often wirelessly)
- Machine learning
 - Extract relevant information from data
 - High computational demand
- Data Processing
 - Mainly in the cloud

D-ITET Center for Project-Based Learning, Integrated Systems Laboratory, ETH Zürich

LEARNING

Internet of Things pushes AI and ML at the edge

The world is producing excessive amounts of "unstructured data" that need to be reconstructed

(IBM's CTO Rob High)

"A PC will generate 90 megabytes of data a day, an autonomous car will generate 4 terabytes a day, a connected plane will generate 50 terabytes a day."

Source: Samsung HBM

Bandwidth

1 Billion cameras WW (2020) 30B Inference/sec

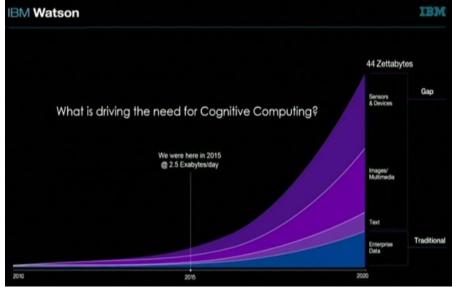
Communication latency also with 5G or other networks is in the range of hundred of milliseconds

Availability

50% of world at less than 8mbps Only 73% 3G/4G availability WW

Security

Data traveling in the network are more vulnerable. Attacks to networks and communication towers

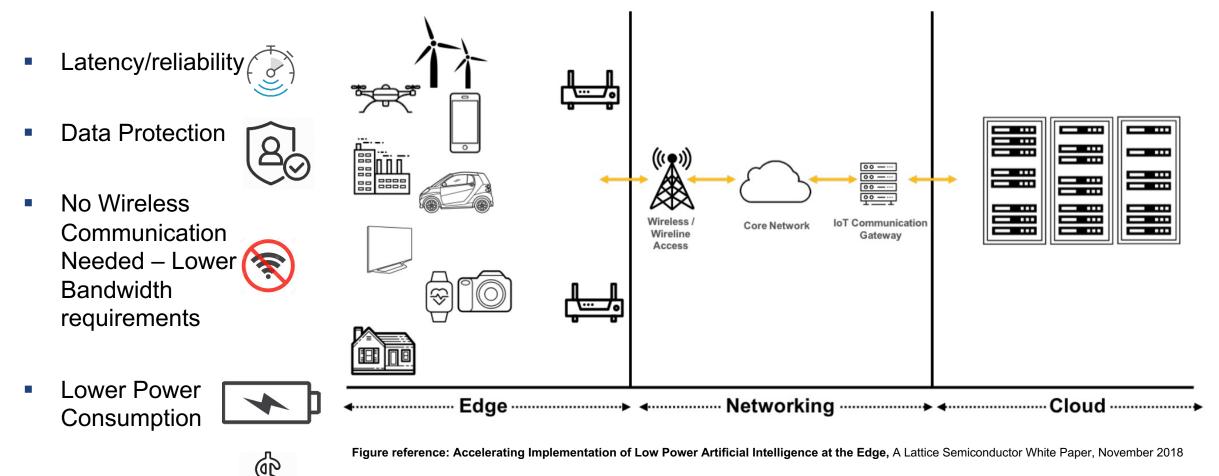


Source: IBM

Since 2015, roughly 2.5 Exabyte of data are being generated per

day. Projection shows a 44 Zettabytes of data per day by 2020.

Edge Vs Cloud

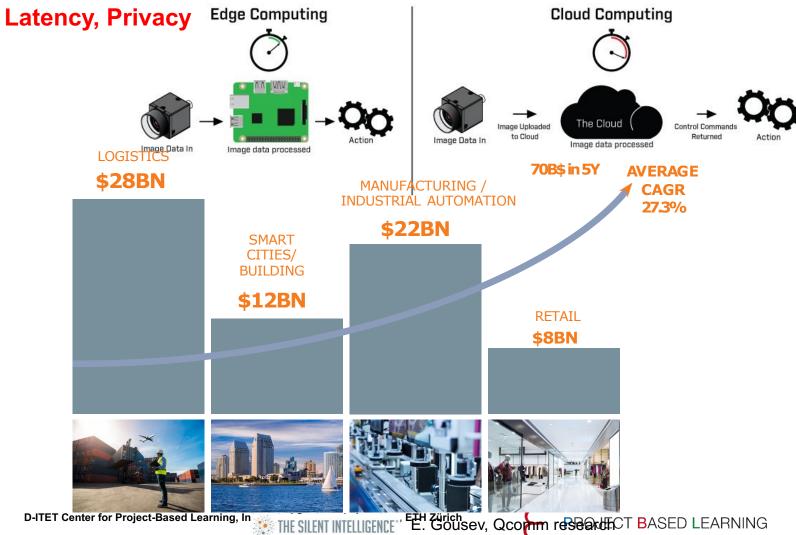


PROJECT BASED LEARNING

Lower Cost

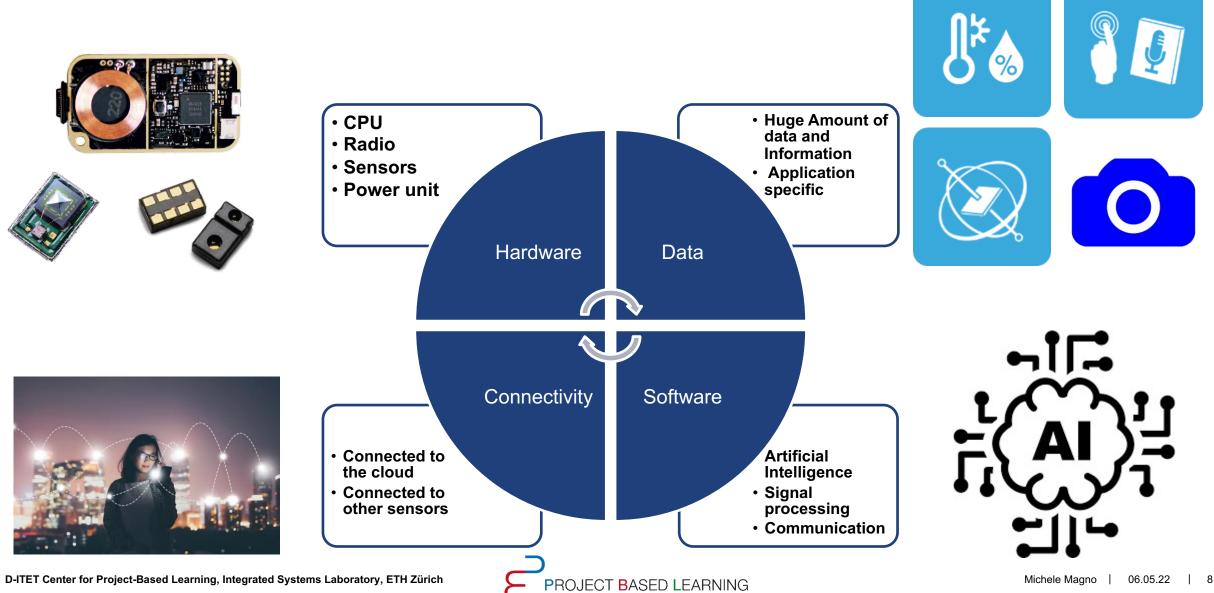
D-ITET Center for Project-Based Learning, Integrated Systems Laboratory, ETH Zürich

Cloud \rightarrow Edge \rightarrow Extreme Edge Al a.k.a. TinyML



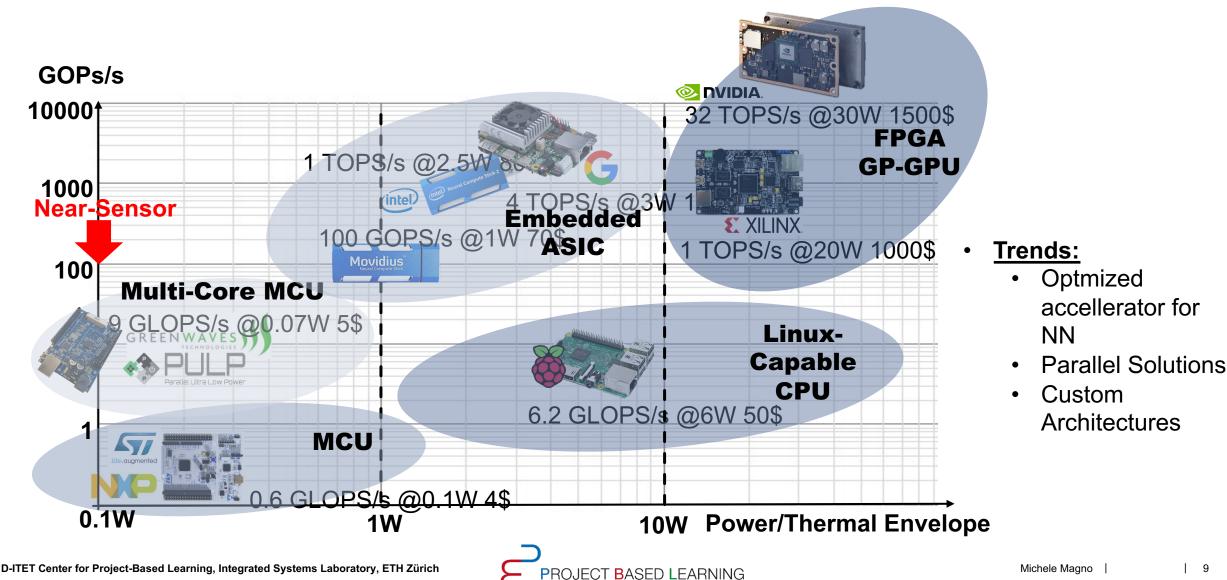
ETH zürich

What is a IoT Device?



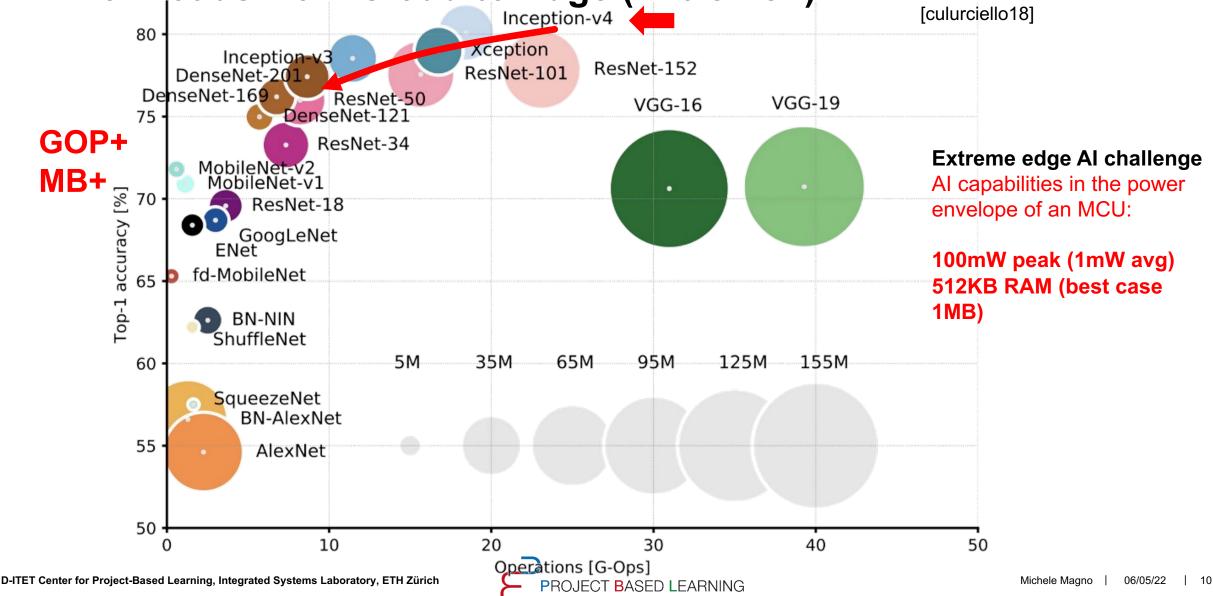
EHzürich

• New platform for edge computing every year. Edge-Al Platforms



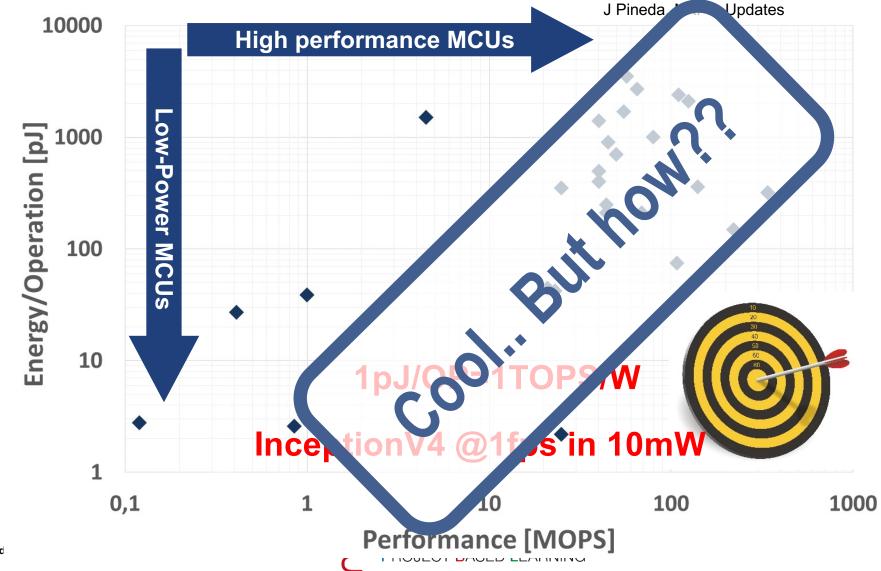
EHzürich

Al Workloads from Cloud to Edge (Extreme?)



ETH zürich

Energy efficiency @ GOPS is THE Challenge



D-ITET Center for Project-Based

New Trend is improving operations for Cycle : parallel + accelerators + computational efficient architectures

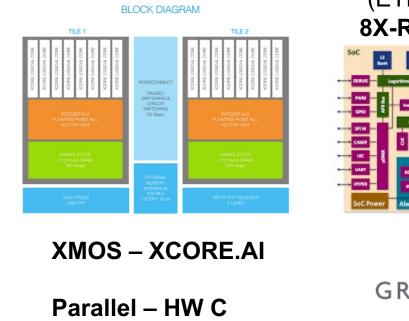
Evaluate the performance in terms of Latency, Computation power, Energy Efficiency, of below 200mW power platforms.

arm CORTEX®-M4									
	Nested vectored Wake-up interrupt interrupt controller controller								
CPU Armv7-M									
Memory pr	stection unit	DSP	FPU						
3х	ITM trace	Data watchpoint	JTAG						
AHB-Lite	ETM trace	Breakpoint unit	Serial wire						

Apollo Ambiq 3. ARM Cortex-M4F

Bluetooth WiFi LTE CXD5602 SDIO/UART/I: UART COTEX-MAF x6 SPI Imager SRAM 1536KB GPX AUDIO CODEC Sensor ADC USB GPS 12C PHY SPI Flash SPI SPI eMMC Serial Flash eMMC Sony Spresense CXD5602 6x ARM-

Cortex-M4



PULP (ETH Prof. Benini) **ACTION COLOR**MAX78000

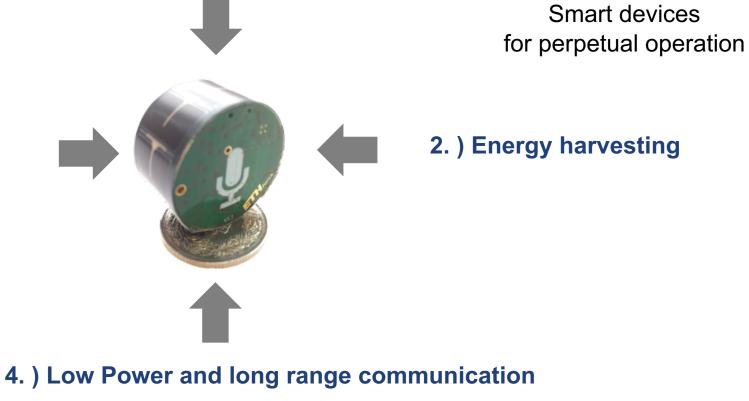
UVICATION COLOR

GAP8 GREENWAVES Dual Core Arm Cortex-M4 RISC-V HW Accelerator

Next generation of IoT devices for surveillance: Always-on Smart Sensors.

1.) Edge Signal Processing and AI

3.) Low power system design

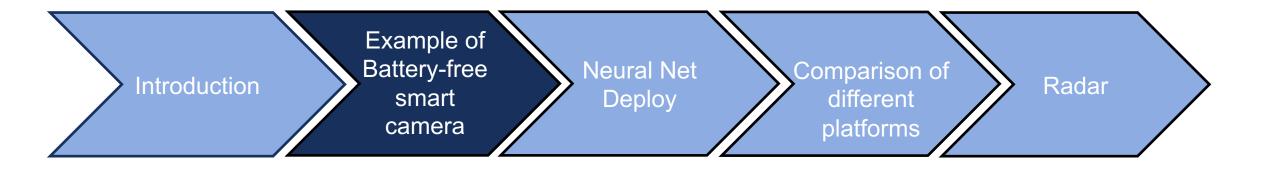


Next generation of IoT device for surveillance: Always-on Smart Sensors.

1.) Edge Signal Processing and AI

Smart devices for perpetual operation 2.) Energy harvesting 3.) Low power system design 4.) Low Power and long range communication D-ITET Center for Project-Based Learning, Integrated Systems Laboratory, ETH Zürich EARNING

Overview



Goal of this previous work

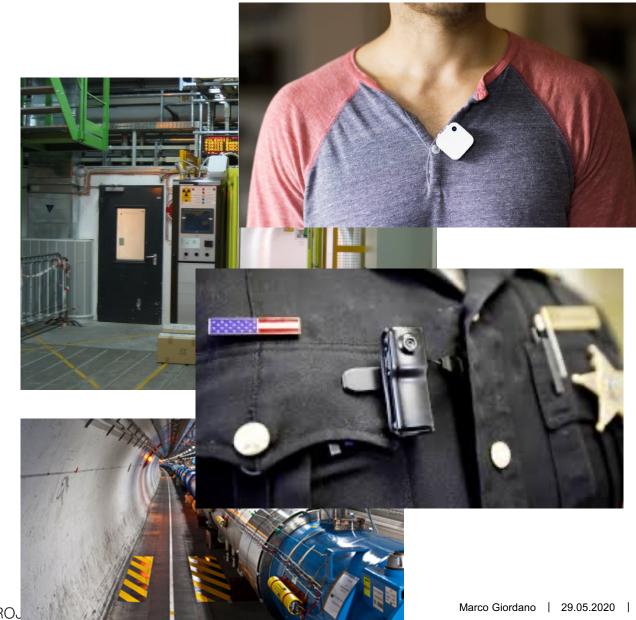
Miniaturized camera devices are today a commercial reality, widely used by:

- Surveillance
- Monitoring ٠
- Controlling access •

They rely on batteries with few hours of operation time

The wave of IoT is pushing the limit of battery-less devices:

> • In this work we propose a Battery-Free Long-Range Wireless Smart Camera for Face Detection



Goal of the previous project

The need:

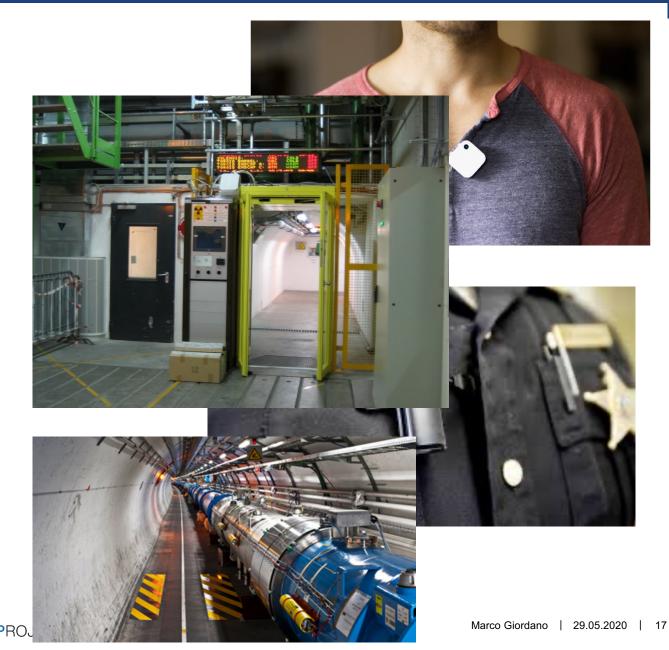
- A device to recognize a person and monitor access to a door
- Line cabling can be very expensive
- If battery powered extremely long lifetime is needed

The solution:

- Energy harvesting to achieve potential infinite lifetime
- Long range wireless communication to report access in real time, low datarate is not a limit

Remarkable results:

- Less than one second per inference
- >90% accuracy over 5 faces
- Proposed neural network model fit in only 115kByte of ROM



ETHzürich

System overview

Self-sustainability for neural network inference is a challenging task:

- A microcontroller has limited resources
- long-running times in active mode

Energy

Harvester

Camera

Cap

Buck

Converter

Energy harvester: state

harvesting with MPPT

PROJECT BASED LEARNING

of the heart energy

Low power MCU: Cortex-M4 to exploit the CMSIS-NN libraries

ToF

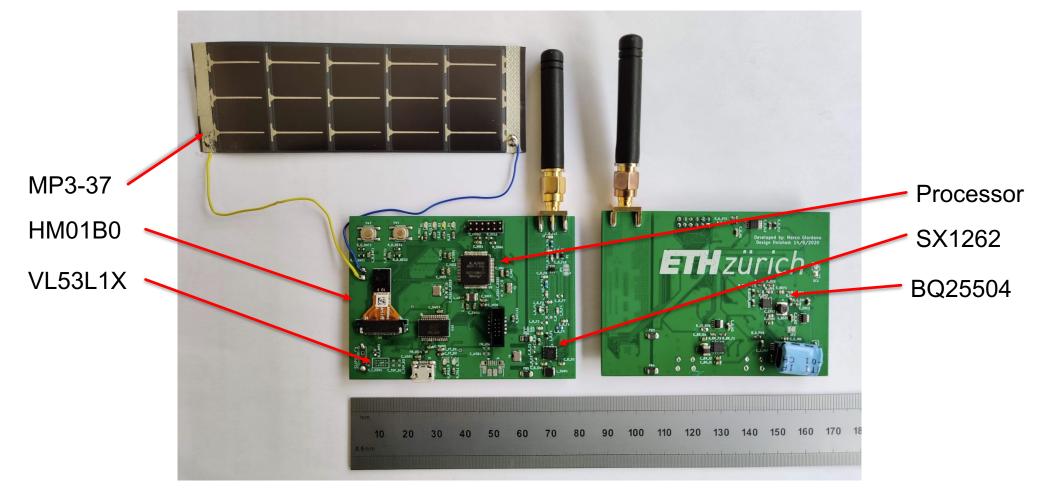
Long range radio: low power preferred over high datarate

Sensing: ToF sensor used for asynchronous wake up

D-ITET Center for Project-Based Learning, Integrated Systems Laboratory, ETH Zürich

System overview – working prototype

We realized a working prototype of a small battery-less system



Overview



The proposed neural network

Goal:

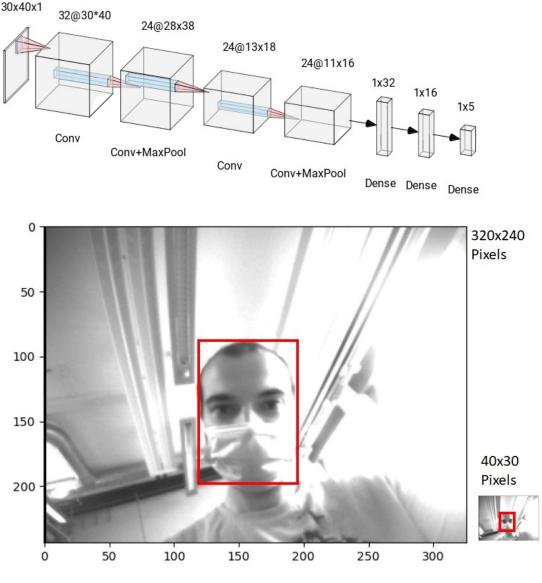
 design a neural network to support inference with limited resources

Challenges:

- Needed to reduce the input size
- Camera shoots greyscale images
- Quantized weights were used to optimize network size and speed up inference

Results:

- More than 90% accuracy
- Only 50kB memory footprint
- Less than 30mJ per inference
- less than 650ms per inference



SED LEARNING

Confusion matrix – Float vs int8

The resolution of 30*40 has been chosen as the best tradeoff between the model's memory occupancy and computing time over a very moderate loss of accuracy.

The numbers in the confusion matrix represent the 5 different faces

Input size/ data type	Accuracy	Precision	Recall	F1-Score		0	- 76	1	0	0	0	- 70) 0-	76	0	0	1	0	- 70	
uala lype						1	1	69	2	1	0	- 60 - 50		4	61	o	6	2	- 60 - 50	
					(1)	2	0	0	42	1	0	- 40) ~ -	2	0	39	2	0	- 40	(3)
240x320, float (1)	0.97	0.97	0.97	0.97		m	0	1	2	76	1	- 30 - 20	m -	0	1	0	79	0	- 30 - 20	
240x320,		0.96	0.94	0.95		4	0	0	0	0	77	- 10	4 -	0	0	0	0	77	- 10 - 0	
int8 (2)						0	82	0	0	0	0	- 80	0 -	79	2	o	0	1	- 70	
30x40,	0.97	0.97	0.97	0.97			0	84	0	1	0	- 60	, , .	2	77	4	0	2	- 60	
float (3)					(2)	2	1	0	37	1	0	- 50 - 40		0	2	36	1	0	- 50 - 40	(4)
	0.91 0.92	0.92		m ·	1	1	2	67	0	- 30 - 20	m -	2	2	6	61	0	- 30 - 20			
int8 (4)						4	0	1	o	0	72	- 10) 4 -	0	2	1	o	70	- 10 - 0	

Confusion matrix – Float vs int8

We exploited the maximum from Cortex M4:

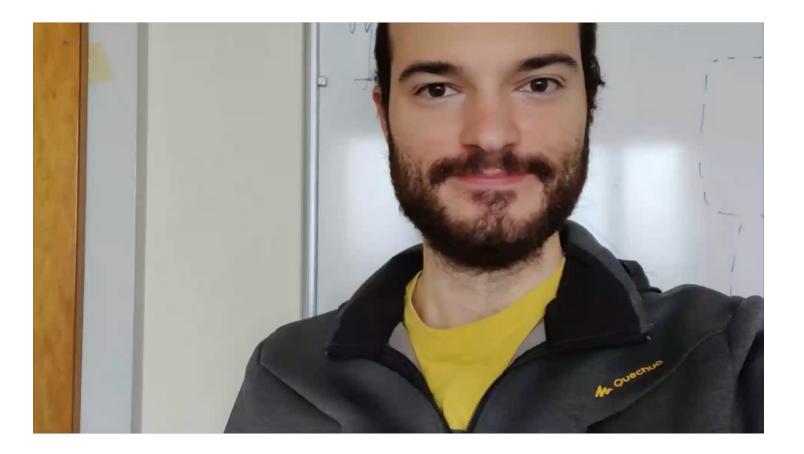
- Used CMSIS-NN and SIMD (Single Instruction Multiple Data)
- Manually implemented the CMSIS-NN over Tensorflow Lite framework

In order to use CMSIS-NN:

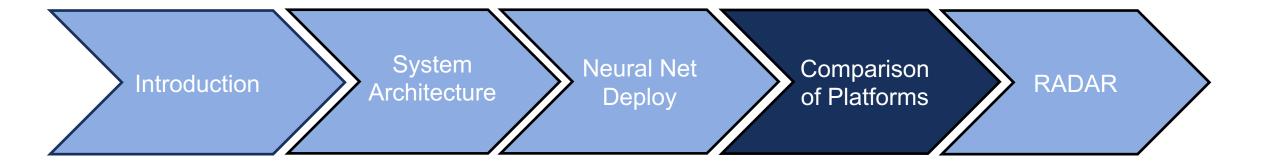
- The model must be quantized to 8 or 16 bits
- Quantized model outperforms floating point in inference time with a little loss in accuracy

Model	ROM	Cycles	Accuracy	ΔAccur	Inferenc e time	ΔTime
Float - FPU	182192 bytes	110091614	0.97	0	2.29 s	0
Int8 - CMSIS	114048 bytes	30949719	0.93	-4%	0.64 s	-357%
Int8 – Google Kernel	114048 bytes	523084654	0.93	-4%	10.89 s	+475%

Demo

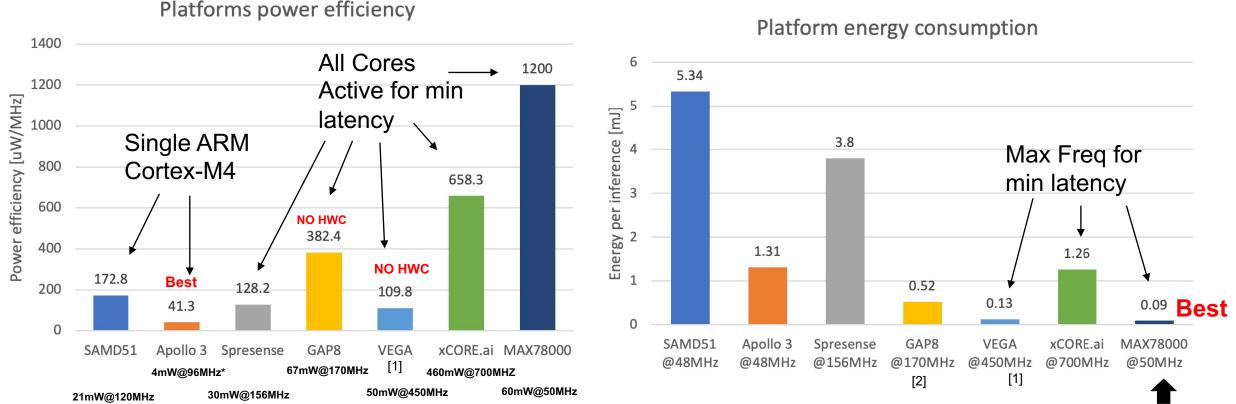


Overview



E *H zürich*

General Comparison: Power vs energy efficiency

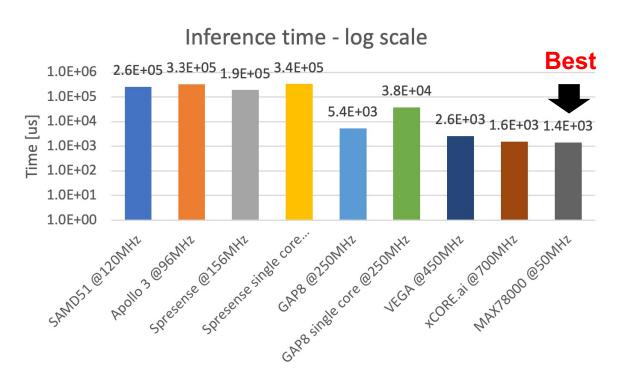


[1] "A 1.3TOPS/W @ 32GOPS Fully Integrated 10-Cores SoC for IoT End-Nodes with 1.7µW Cognitive Wake-Up from MRAM-Based State Retentive Sleep Mode", ISSCC2021 [2] "PULP-NN: Accelerating Quantized Neural Networks on Parallel Ultra-Low-Power RISC-V Processors", Arxiv

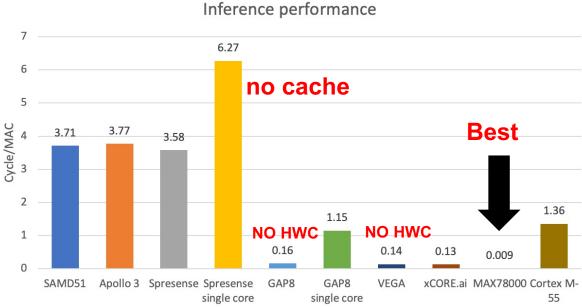
*Measured data during the inference, Amig datasheet claims half current consumption D-ITET Center for Project-Based Learning, Integrated Systems Laboratory, ETH Zürich

PROJECT BASED LEARNING

General comparison: Computational efficiency vs min Latency

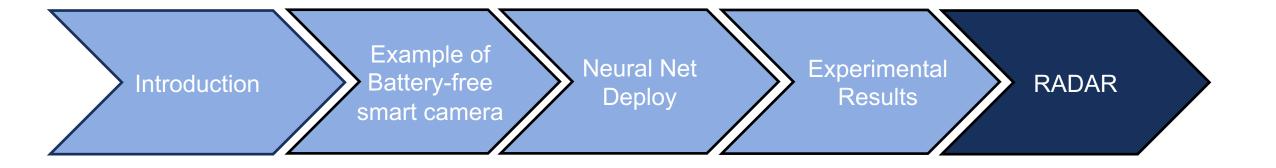


Max Freq for min latency



ETH zürich

Overview



Introduction: Hand Gesture Recognition

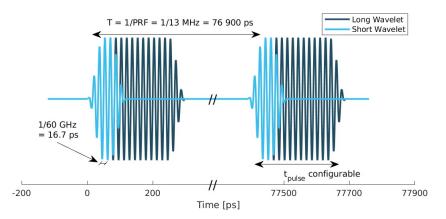
- Gesture Recognition is the topic of computer science that interpret human gesture via Mathematical algorithms.
- Human machine Interfaces
- Camera, inertial sensors and other sensors

Soli: ubiquitous gesture sensing with millimeter wave radar (SIGGRAPH 2016)

Promising Technology: Short Range Radar

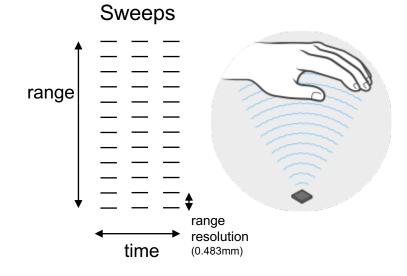
Radar

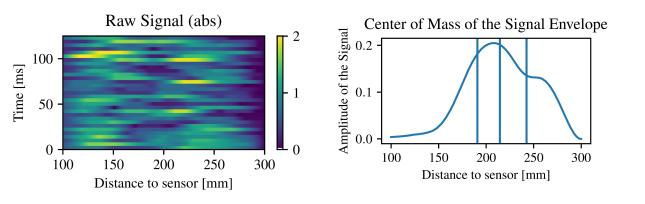
- Classical airplane detection radar: 1-12 GHz (wavelength = 2.5-30cm)
- Short-range Radar: 60GHz (wavelength = 5cm)
- Data from sensor:
 - Sweep @ 160Hz or higher → each over range
 - Time and range discrete signal *S*[*t*,*r*]



mm wavelength pulsed coherent radar, which means that it transmits radio signals in short pulses where the starting phase is well known.

PROJECT BASED LEARNING

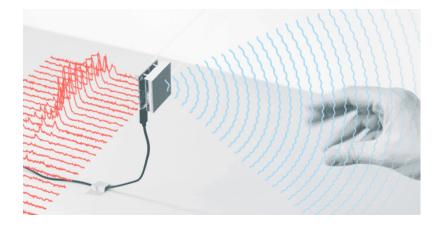


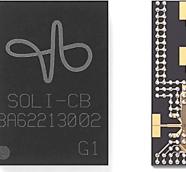


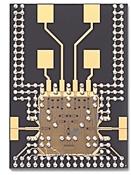
EHzürich

Gesture Recognition Based on Radar: Google Soli Sensor

- Increasing research on radar for gesture recognition^{1,2,3,4}
- Google developed micro-radar for gesture recognition
- Good results on difficult hand-gestures: 87% accuracy on 11 gestures and 10 people
- Why Google Soli is not tinyML?
 - Sensor consumes too much power (300mW)
 - Too much data to process (10'000 sweeps/s)
 - Prediction model too big for embedded systems (689MB)
 - CNN+RNN (LSTM)⁴
 - Pixel 4 Algorithm could have different model (Realised 2020)







¹Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar, 2016

⁴Interacting with Soli: Exploring Fine-Grained Dynamic Gesture Recognition in the Radio-Frequency Spectrum. 2016

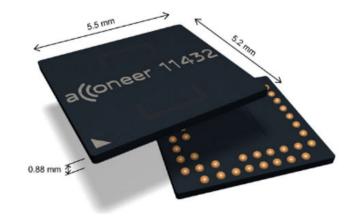
³Sparsity-based Dynamic Hand Gesture Recognition Using Micro-Doppler Signatures, 2017

A Hand Gesture Recognition Sensor Using Reflected Impulses. 2017

ETHzürich

Main contribution of this work

- Implement radar based hand-gesture recognition in embedded system Based on TCN+CNN, below 512KiB
- Create dataset with fine-grained hand-gestures
 - at least 1000 samples per class and 20 users
- Algorithm development suitable for embedded systems
 - Iess than 1MB, at least 700x smaller than I. w. Soli
- Achieving similar accuracy as I. w. Soli
 - 85% (single-user), 87% (10 people) on 11 Gestures¹
- Algorithm implementation in a mW Parallel RISC-V bases processor and experimental evaluation on efficiency (power, run-time)



¹Interacting with Soli: Exploring Fine-Grained Dynamic Gesture Recognition in the Radio-Frequency Spectrum. 2016

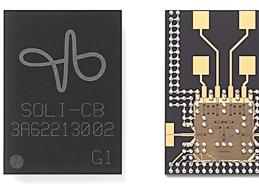
Toward TinyML and Low Power Embedded System.

We want to bring radar based gesture recognition into low embedded system

But how?

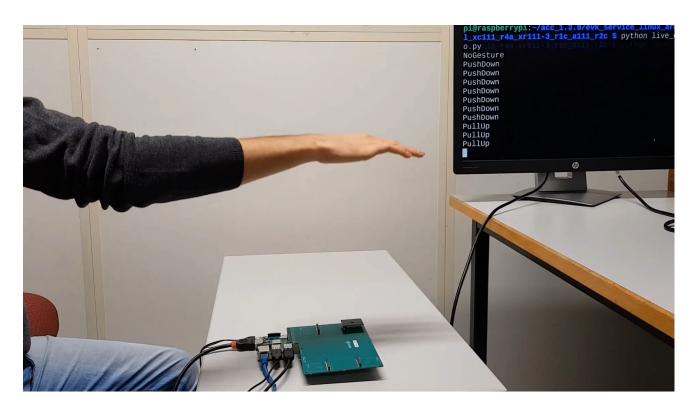
- Different sensor: Acconeer
 - Lower power
 - Less data:
 - lower sweep rate, fewer Tx, Rx

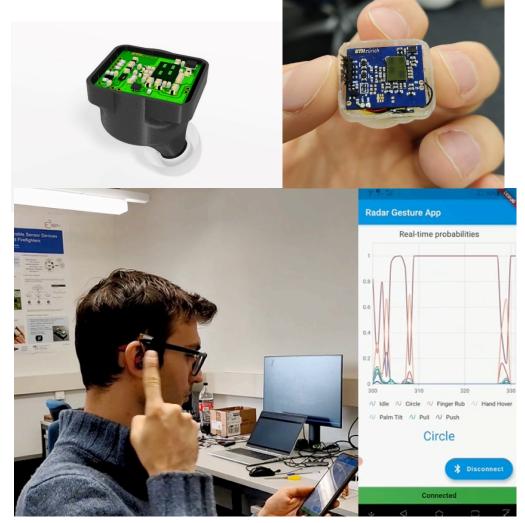
Sensors:	Soli	Acconeer
Carrier Frequency	60GHz	60GHz
Sweep Rate (up to)	10'000Hz	1'500Hz
Power	300mW	20mw @100Hz
Transmitters/Receivers	Tx:2, Rx:4	Tx:1, Rx:1



ETH zürich

Demo fix deployment and earbuds

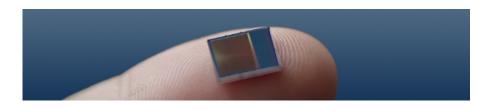




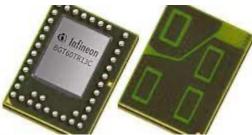
EHzürich

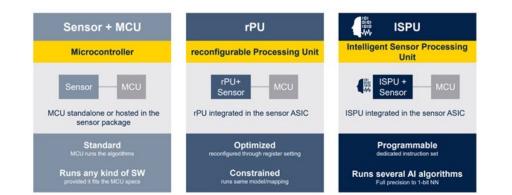
Access to novel sensors and sensors that start to include ML

- ST Sensors with ISPU
 - Predictive maintenance
 - Condition monitoring etc.



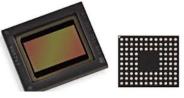
Sony IMX-500





ST ToF, Low Latency Camera and more

BASED LEARNING

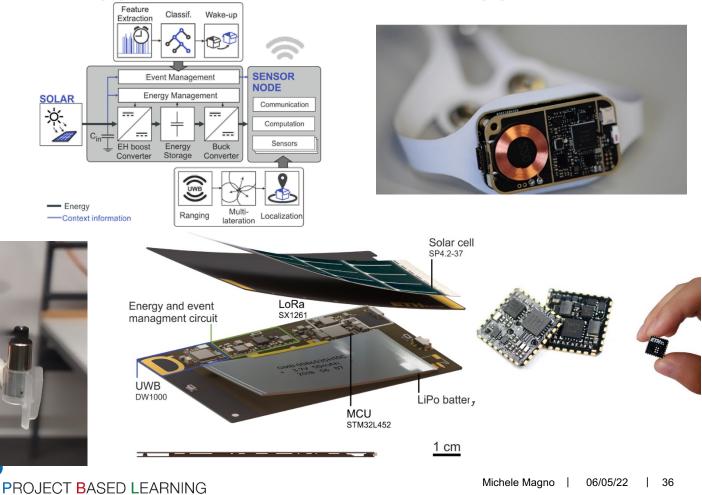


Michele Magno | 06/05/22 | 35

ETHzürich

Many work on Tiny ML with different applications

- TinyML and Embedded Control on Robots
- Self Sustaining Smart-Sensors for Indoor and outdoor Applications and Industrial Applications



Thank you for your attention

 Edge Ai and Tiny ML is just the begin for next generation of smart IoT sensors and devices.

Michele.magno@pbl.ee.ethz.ch

