
Probabilistic Inference in Simulators

Atılım Güneş Baydin, Lukas Heinrich, Wahid Bhimji, 
Lei Shao, Saeid Naderiparizi, Andreas Munk, 
Jialin Liu, Bradley Gram-Hansen, Gilles Louppe, 
Lawrence Meadows, Philip Torr, Victor Lee, Prabhat, 
Kyle Cranmer, Frank Wood

Applied Machine Learning Days, EPFL
28 Jan 2020



Simulation and physical sciences
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Computational models and simulation are key to scientific advance at all scales

Climate science CosmologyWeatherDrug discovery

Nuclear physics Material designParticle physics



Introducing a new way to use existing simulators
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Simulation
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programming 
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● Simulate forward evolution of the system
● Generate samples of output

Prediction:
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Simulators

7

● Simulate forward evolution of the system
● Generate samples of output

Prediction:

WE NEED THE INVERSE!

Parameters Outputs (data)

Simulator



Simulators
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● Simulate forward evolution of the system
● Generate samples of output

Prediction:

● Find parameters that can produce (explain) observed data
● Inverse problem
● Often a manual process

Inference:

Parameters Outputs (data)

Simulator



Simulators
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Observed data

Inferred 
parameters

Gene network Gene expression



Simulators
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Simulators

11

Parameters Outputs (data)

Simulator
Observed data

Inferred 
parameters

Event analyses &
new particle 
discoveries

Particle detector 
readings



Inverting a simulator
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Probabilistic programming is a machine learning framework allowing us to
● write programs that define probabilistic models
● run automated Bayesian inference of parameters 

conditioned on observed outputs (data)

Pyro Edward Stan

Parameters Outputs (data)

Simulator
Observed data
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Inverting a simulator
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Probabilistic programming is a machine learning framework allowing us to
● write programs that define probabilistic models
● run automated Bayesian inference of parameters 

conditioned on observed outputs (data)

Pyro Edward Stan

Parameters Outputs (data)

Simulator
Observed data

Inferred 
parameters

● Has been limited to toy and small-scale problems
● Normally requires one to implement a probabilistic 

model from scratch in the chosen language/system



Inverting a simulator
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Key idea:
Many simulators are stochastic and they define probabilistic models
by sampling random numbers
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Inverting a simulator
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Key idea:
Many simulators are stochastic and they define probabilistic models
by sampling random numbers

Simulators are probabilistic programs!

Parameters Outputs (data)

Simulator

Code

Observed data
Inferred 

parameters



Inverting a simulator
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Key idea:
Many simulators are stochastic and they define probabilistic models
by sampling random numbers

Simulators are probabilistic programs!
We “just” need an infrastructure to execute them as such

Parameters Outputs (data)

Simulator

Code

Observed data
Inferred 

parameters



A new probabilistic programming system for 
existing simulators (in any language)
based on PyTorch
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Probabilistic 
execution
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Parameters Outputs (data)

Simulator

Code

Probabilistic 
execution

● Run forward & catch all random choices (“hijack” all calls to RNG)
● Record an execution trace: a record of all parameters, random choices, outputs

Observed data
Inferred 

parameters
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Parameters Outputs (data)

Simulator

Code

Probabilistic 
execution

● Run forward & catch all random choices (“hijack” all calls to RNG)
● Record an execution trace: a record of all parameters, random choices, outputs

Observed data
Inferred 

parameters

Probabilistic Programming eXecution protocol
C++, C#, Dart, Go, Java, JavaScript, Lua, Python, Rust and others
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Parameters Outputs (data)

Simulator

Code

Probabilistic 
execution

● Run forward & catch all random choices (“hijack” all calls to RNG)
● Record an execution trace: a record of all parameters, random choices, outputs

Observed data
Inferred 

parameters

Uniquely label each choice
at runtime by “addresses” of
stack frames
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Parameters Outputs (data)

Simulator

Code

Probabilistic 
execution

● Run forward & catch all random choices (“hijack” all calls to RNG)
● Record an execution trace: a record of all parameters, random choices, outputs

○ Conditioning: compare simulated output and observed data
● Approximate the distribution of parameters that can produce (explain) 

observed data, using inference engines like Markov-chain Monte Carlo (MCMC)

Observed data
Inferred 

parameters
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Parameters Outputs (data)
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● Record an execution trace: a record of all parameters, random choices, outputs

○ Conditioning: compare simulated output and observed data
● Approximate the distribution of parameters that can produce (explain) 

observed data, using inference engines like Markov-chain Monte Carlo (MCMC)

Observed data
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parameters

Simulators = giant probability models so inference is hard and 
computationally costly
● Need to run simulator up to millions of times
● Simulator execution and MCMC inference are sequential
● MCMC has “burn-in period” and autocorrelation
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Parameters Outputs (data)

Simulator

Code

Probabilistic 
execution

● Run forward & catch all random choices (“hijack” all calls to RNG)
● Record an execution trace: a record of all parameters, random choices, outputs

○ Conditioning: compare simulated output and observed data
● Approximate the distribution of parameters that can produce (explain) 

observed data, using inference engines like Markov-chain Monte Carlo (MCMC)

Observed data
Inferred 

parameters

Simulators = giant probability models so inference is hard and 
computationally costly
● Need to run simulator up to millions of times
● Simulator execution and MCMC inference are sequential
● MCMC has “burn-in period” and autocorrelation

But we can amortize the cost of inference using deep learning



Sim. Trace

Sim.

⋮

Distributed
data generation

Trace

Trace
⋮

Training data
(execution traces)

⋮

Distributed
training

Sim.
Trained NN

NN

NN
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Training (recording simulator behavior)
● Deep recurrent neural network learns all random choices in simulator
● Dynamic NN: grows with simulator complexity

○ Layers get created as we learn more of the simulator
○ 100s of millions of parameters in particle physics simulation

● Costly, but amortized: we need to train only once per given model



Sim. Trace

Sim.

⋮

Distributed
data generation

Trace

Trace
⋮

Training data
(execution traces)

⋮

Distributed
training

Sim.
Trained NN

NN

NN

NN

Sim.

Sim.

⋮

Distributed inference

Sim.

Trained NN

⋮

NN

NN

NN

Observed data

Trace

Trace

Trace
⋮

Traces reproducing
observed data

Inferred
parameters

HPC

HPC HPC



Sim.

Sim.

⋮

Distributed inference

Sim.

Trained NN

⋮

NN

NN

NN

Observed data

Trace

Trace

Trace
⋮

Traces reproducing
observed data

HPC

Inference (controlling simulator behavior)
● Trained deep NN makes intelligent choices given data observation
● Embarrassingly parallel distributed inference
● No “burn in period”
● No autocorrelation: every sample is independent

Inferred
parameters



Trained NN

Observed data

Inference (controlling simulator behavior)
● Trained deep NN makes intelligent choices given data observation
● Embarrassingly parallel distributed inference
● No “burn in period”
● No autocorrelation: every sample is independent

Inferred
parameters



                                                                                 
  https://github.com/pyprob/pyprob

● Probabilistic programming system for simulators and HPC, based on PyTorch
Distributed training and inference, efficient support for multi-TB distribution files
Optimized memory usage, parallel trace processing and combination

https://github.com/pyprob/ppx 

● Probabilistic Programming eXecution protocol
Simulator and inference/NN executed in separate processes and machines across network
Using Google flatbuffers to support C++, C#, Dart, Go, Java, JavaScript, Lua, Python, Rust and others
Probabilistic programming analogue to Open Neural Network Exchange (ONNX) for deep learning

Pyprob_cpp, RNG front end for C++ simulators    https://github.com/pyprob/pyprob_cpp

Probabilistic programming with simulators

Containerized workflow
Develop locally, deploy to HPC on many nodes for experiments

https://github.com/probprog/pyprob
https://github.com/probprog/ppx
https://github.com/probprog/pyprob_cpp
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We study tau lepton decay using the state-of-the-art Sherpa simulator (C++)
Coupled to a fast approximate calorimeter simulation in C++

32

Tau lepton decay

Baydin, Heinrich, Bhimji, Shao, Naderiparizi, Munk, Liu, Gram-Hansen, Louppe, Meadows, Torr, Lee, Prabhat, Cranmer, Wood.  
NeurIPS 2019



We found Sherpa to contain at least 25k addresses (latent variables)
Note: the simulator defines an unlimited number of latents due to Turing-complete host 
language and presence of sampling loops

... 33

Latent variables in Sherpa



● Achieved MCMC (RMH) “ground truth”
● First tractable Bayesian inference for LHC physics

○ Posterior over full latent space (>25k latent variables)
○ Autocorrelation typically around 105

● Amortized inference (IC) closely matches MCMC (RMH)
○ No autocorrelation, embarrassingly parallel
○ MCMC: 115 hours, IC: 30 minutes

Inference results
Gelman-Rubin convergence diagnostic

Autocorrelation

Trace log-probability



Etalumis gives access to all latent variables: allows answering 
any model-based question 



Etalumis gives access to all latent variables: allows answering 
any model-based question 



Latent probabilistic structure of 10 most frequent trace types
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Interpretability



Latent probabilistic structure of 10 most frequent trace types
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Interpretability



Latent probabilistic structure of 10 most frequent trace types
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Latent probabilistic structure of 25 most frequent trace types
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Latent probabilistic structure of 100 most frequent trace types
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Latent probabilistic structure of 250 most frequent trace types
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What’s next?



● Autodiff through PPX protocol
● Learning simulator surrogates (approximate forward simulators)
● Rejection sampling loops (weighting schemes)
● Rare event simulation for compilation (“prior inflation”)
● Batching of open-ended traces for NN training
● Distributed training of dynamic networks

○ Recently ran on 32k CPU cores on Cori (largest-scale PyTorch MPI)
● User features: posterior code highlighting, etc.
● Other simulators: astrophysics, epidemiology, computer vision
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Current and upcoming work



Simulation of composite materials
(Munk et al. 2019, in sub. arXiv:1910.11950)

Simulation of epidemics
(Gram-Hansen et al., 2019, in prep.)

This is just the beginning ...

Probabilistic programming is for the first time practical for 
large-scale real-world science models 

https://arxiv.org/abs/1910.11950


Thank you for listening

Applied Machine Learning Days, EPFL
28 Jan 2020
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Extra slides



Calorimeter
For each particle in the final state coming from Sherpa:

1. Determine whether it interacts with the calorimeter at all
(muons and neutrinos don't)

2. Calculate the total mean number and spatial distribution of 
energy depositions from the calorimeter shower
(simulating combined effect of secondary particles )

3. Draw a number of actual depositions from the total mean 
and then draw that number of energy depositions according 
to the spatial distribution



• Minimize

• Using stochastic gradient descent with Adam
• Infinite stream of minibatches

 
sampled from the model

Training objective and data for IC
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Gelman-Rubin and autocorrelation formulae
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From Eric B. Ford (Penn State): Bayesian Computing for Astronomical Data Analysis
http://astrostatistics.psu.edu/RLectures/diagnosticsMCMC.pdf



Gelman-Rubin and autocorrelation formulae
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From Eric B. Ford (Penn State): Bayesian Computing for Astronomical Data Analysis
http://astrostatistics.psu.edu/RLectures/diagnosticsMCMC.pdf


