
Probabilistic Inference in Simulators

Atılım Güneş Baydin, Lukas Heinrich, Wahid Bhimji,
Lei Shao, Saeid Naderiparizi, Andreas Munk,
Jialin Liu, Bradley Gram-Hansen, Gilles Louppe,
Lawrence Meadows, Philip Torr, Victor Lee, Prabhat,
Kyle Cranmer, Frank Wood

Applied Machine Learning Days, EPFL
28 Jan 2020

Simulation and physical sciences

2

Computational models and simulation are key to scientific advance at all scales

Climate science CosmologyWeatherDrug discovery

Nuclear physics Material designParticle physics

Introducing a new way to use existing simulators

3

Simulation
Probabilistic

programming

Simulators

4

Parameters Outputs (data)

Simulator

Simulators

5

● Simulate forward evolution of the system
● Generate samples of output

Prediction:

Parameters Outputs (data)

Simulator

Simulators

6

● Simulate forward evolution of the system
● Generate samples of output

Prediction:

Parameters Outputs (data)

Simulator

Simulators

7

● Simulate forward evolution of the system
● Generate samples of output

Prediction:

WE NEED THE INVERSE!

Parameters Outputs (data)

Simulator

Simulators

8

● Simulate forward evolution of the system
● Generate samples of output

Prediction:

● Find parameters that can produce (explain) observed data
● Inverse problem
● Often a manual process

Inference:

Parameters Outputs (data)

Simulator

Simulators

9

Parameters Outputs (data)

Simulator
Observed data

Inferred
parameters

Gene network Gene expression

Simulators

10

Parameters Outputs (data)

Simulator
Observed data

Inferred
parameters

Earthquake
location &

characteristics

Seismometer
readings

Simulators

11

Parameters Outputs (data)

Simulator
Observed data

Inferred
parameters

Event analyses &
new particle
discoveries

Particle detector
readings

Inverting a simulator

12

Probabilistic programming is a machine learning framework allowing us to
● write programs that define probabilistic models
● run automated Bayesian inference of parameters

conditioned on observed outputs (data)

Pyro Edward Stan

Parameters Outputs (data)

Simulator
Observed data

Inferred
parameters

Inverting a simulator

13

Probabilistic programming is a machine learning framework allowing us to
● write programs that define probabilistic models
● run automated Bayesian inference of parameters

conditioned on observed outputs (data)

Pyro Edward Stan

Parameters Outputs (data)

Simulator
Observed data

Inferred
parameters

● Has been limited to toy and small-scale problems
● Normally requires one to implement a probabilistic

model from scratch in the chosen language/system

Inverting a simulator

14

Key idea:
Many simulators are stochastic and they define probabilistic models
by sampling random numbers

Parameters Outputs (data)

Simulator
Observed data

Inferred
parameters

Inverting a simulator

15

Key idea:
Many simulators are stochastic and they define probabilistic models
by sampling random numbers

Simulators are probabilistic programs!

Parameters Outputs (data)

Simulator

Code

Observed data
Inferred

parameters

Inverting a simulator

16

Key idea:
Many simulators are stochastic and they define probabilistic models
by sampling random numbers

Simulators are probabilistic programs!
We “just” need an infrastructure to execute them as such

Parameters Outputs (data)

Simulator

Code

Observed data
Inferred

parameters

A new probabilistic programming system for
existing simulators (in any language)
based on PyTorch

18

Probabilistic
execution

Parameters Outputs (data)

Simulator

Code

Observed data
Inferred

parameters

19

Parameters Outputs (data)

Simulator

Code

Probabilistic
execution

● Run forward & catch all random choices (“hijack” all calls to RNG)
● Record an execution trace: a record of all parameters, random choices, outputs

Observed data
Inferred

parameters

20

Parameters Outputs (data)

Simulator

Code

Probabilistic
execution

● Run forward & catch all random choices (“hijack” all calls to RNG)
● Record an execution trace: a record of all parameters, random choices, outputs

Observed data
Inferred

parameters

Probabilistic Programming eXecution protocol
C++, C#, Dart, Go, Java, JavaScript, Lua, Python, Rust and others

21

Parameters Outputs (data)

Simulator

Code

Probabilistic
execution

● Run forward & catch all random choices (“hijack” all calls to RNG)
● Record an execution trace: a record of all parameters, random choices, outputs

Observed data
Inferred

parameters

Uniquely label each choice
at runtime by “addresses” of
stack frames

22

Parameters Outputs (data)

Simulator

Code

Probabilistic
execution

● Run forward & catch all random choices (“hijack” all calls to RNG)
● Record an execution trace: a record of all parameters, random choices, outputs

○ Conditioning: compare simulated output and observed data
● Approximate the distribution of parameters that can produce (explain)

observed data, using inference engines like Markov-chain Monte Carlo (MCMC)

Observed data
Inferred

parameters

23

Parameters Outputs (data)

Simulator

Code

Probabilistic
execution

● Run forward & catch all random choices (“hijack” all calls to RNG)
● Record an execution trace: a record of all parameters, random choices, outputs

○ Conditioning: compare simulated output and observed data
● Approximate the distribution of parameters that can produce (explain)

observed data, using inference engines like Markov-chain Monte Carlo (MCMC)

Observed data
Inferred

parameters

Simulators = giant probability models so inference is hard and
computationally costly
● Need to run simulator up to millions of times
● Simulator execution and MCMC inference are sequential
● MCMC has “burn-in period” and autocorrelation

24

Parameters Outputs (data)

Simulator

Code

Probabilistic
execution

● Run forward & catch all random choices (“hijack” all calls to RNG)
● Record an execution trace: a record of all parameters, random choices, outputs

○ Conditioning: compare simulated output and observed data
● Approximate the distribution of parameters that can produce (explain)

observed data, using inference engines like Markov-chain Monte Carlo (MCMC)

Observed data
Inferred

parameters

Simulators = giant probability models so inference is hard and
computationally costly
● Need to run simulator up to millions of times
● Simulator execution and MCMC inference are sequential
● MCMC has “burn-in period” and autocorrelation

But we can amortize the cost of inference using deep learning

Sim. Trace

Sim.

⋮

Distributed
data generation

Trace

Trace
⋮

Training data
(execution traces)

⋮

Distributed
training

Sim.
Trained NN

NN

NN

NNHPC HPC

Training (recording simulator behavior)
● Deep recurrent neural network learns all random choices in simulator
● Dynamic NN: grows with simulator complexity

○ Layers get created as we learn more of the simulator
○ 100s of millions of parameters in particle physics simulation

● Costly, but amortized: we need to train only once per given model

Sim. Trace

Sim.

⋮

Distributed
data generation

Trace

Trace
⋮

Training data
(execution traces)

⋮

Distributed
training

Sim.
Trained NN

NN

NN

NN

Sim.

Sim.

⋮

Distributed inference

Sim.

Trained NN

⋮

NN

NN

NN

Observed data

Trace

Trace

Trace
⋮

Traces reproducing
observed data

Inferred
parameters

HPC

HPC HPC

Sim.

Sim.

⋮

Distributed inference

Sim.

Trained NN

⋮

NN

NN

NN

Observed data

Trace

Trace

Trace
⋮

Traces reproducing
observed data

HPC

Inference (controlling simulator behavior)
● Trained deep NN makes intelligent choices given data observation
● Embarrassingly parallel distributed inference
● No “burn in period”
● No autocorrelation: every sample is independent

Inferred
parameters

Trained NN

Observed data

Inference (controlling simulator behavior)
● Trained deep NN makes intelligent choices given data observation
● Embarrassingly parallel distributed inference
● No “burn in period”
● No autocorrelation: every sample is independent

Inferred
parameters

 https://github.com/pyprob/pyprob

● Probabilistic programming system for simulators and HPC, based on PyTorch
Distributed training and inference, efficient support for multi-TB distribution files
Optimized memory usage, parallel trace processing and combination

https://github.com/pyprob/ppx

● Probabilistic Programming eXecution protocol
Simulator and inference/NN executed in separate processes and machines across network
Using Google flatbuffers to support C++, C#, Dart, Go, Java, JavaScript, Lua, Python, Rust and others
Probabilistic programming analogue to Open Neural Network Exchange (ONNX) for deep learning

Pyprob_cpp, RNG front end for C++ simulators https://github.com/pyprob/pyprob_cpp

Probabilistic programming with simulators

Containerized workflow
Develop locally, deploy to HPC on many nodes for experiments

https://github.com/probprog/pyprob
https://github.com/probprog/ppx
https://github.com/probprog/pyprob_cpp

30

etalumis → | ← simulate
Atılım Güneş
Baydin

Bradley
Gram-Hansen

Lukas
Heinrich

Kyle
Cranmer

Andreas
Munk

Saeid
Naderiparizi

Frank
Wood

Wahid
Bhimji

Jialin
Liu

Prabhat

Gilles
Louppe

Lei
Shao

Victor
Lee

Phil
Torr

Lawrence
Meadows

31Baydin, Heinrich, Bhimji, Shao, Naderiparizi, Munk, Liu, Gram-Hansen, Louppe, Meadows, Torr, Lee, Prabhat, Cranmer, Wood.
NeurIPS 2019

We study tau lepton decay using the state-of-the-art Sherpa simulator (C++)
Coupled to a fast approximate calorimeter simulation in C++

32

Tau lepton decay

Baydin, Heinrich, Bhimji, Shao, Naderiparizi, Munk, Liu, Gram-Hansen, Louppe, Meadows, Torr, Lee, Prabhat, Cranmer, Wood.
NeurIPS 2019

We found Sherpa to contain at least 25k addresses (latent variables)
Note: the simulator defines an unlimited number of latents due to Turing-complete host
language and presence of sampling loops

... 33

Latent variables in Sherpa

● Achieved MCMC (RMH) “ground truth”
● First tractable Bayesian inference for LHC physics

○ Posterior over full latent space (>25k latent variables)
○ Autocorrelation typically around 105

● Amortized inference (IC) closely matches MCMC (RMH)
○ No autocorrelation, embarrassingly parallel
○ MCMC: 115 hours, IC: 30 minutes

Inference results
Gelman-Rubin convergence diagnostic

Autocorrelation

Trace log-probability

Etalumis gives access to all latent variables: allows answering
any model-based question

Etalumis gives access to all latent variables: allows answering
any model-based question

Latent probabilistic structure of 10 most frequent trace types

37

Interpretability

Latent probabilistic structure of 10 most frequent trace types

38

Interpretability

Latent probabilistic structure of 10 most frequent trace types

39

px

py

pz

Decay
channel

Rejection
sampling

Rejection
sampling

Calorimeter

Interpretability

Latent probabilistic structure of 25 most frequent trace types

40

px

py

pz

Decay
channel

Rejection
sampling

Rejection
sampling

Calorimeter

Interpretability

Latent probabilistic structure of 100 most frequent trace types

41

px

py

pz

Decay
channel

Rejection
sampling

Rejection
sampling

Calorimeter

Interpretability

Latent probabilistic structure of 250 most frequent trace types

42

px

py

pz

Decay
channel

Rejection
sampling

Rejection
sampling

Calorimeter

Interpretability

What’s next?

● Autodiff through PPX protocol
● Learning simulator surrogates (approximate forward simulators)
● Rejection sampling loops (weighting schemes)
● Rare event simulation for compilation (“prior inflation”)
● Batching of open-ended traces for NN training
● Distributed training of dynamic networks

○ Recently ran on 32k CPU cores on Cori (largest-scale PyTorch MPI)
● User features: posterior code highlighting, etc.
● Other simulators: astrophysics, epidemiology, computer vision

44

Current and upcoming work

Simulation of composite materials
(Munk et al. 2019, in sub. arXiv:1910.11950)

Simulation of epidemics
(Gram-Hansen et al., 2019, in prep.)

This is just the beginning ...

Probabilistic programming is for the first time practical for
large-scale real-world science models

https://arxiv.org/abs/1910.11950

Thank you for listening

Applied Machine Learning Days, EPFL
28 Jan 2020

47

References

Atılım Güneş Baydin, Lukas Heinrich, Wahid Bhimji, Lei Shao, Saeid Naderiparizi, Andreas
Munk, Jialin Liu, Bradley Gram-Hansen, Gilles Louppe, Lawrence Meadows, Philip Torr,
Victor Lee, Prabhat, Kyle Cranmer, Frank Wood. 2019. “Efficient Probabilistic Inference in the
Quest for Physics Beyond the Standard Model.” NeurIPS 2019

Atılım Güneş Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Lawrence F. Meadows, Jialin
Liu, Andreas Munk, Saeid Naderiparizi, Bradley Gram-Hansen, Gilles Louppe, Mingfei Ma,
Xiaohui Zhao, Philip Torr, Kyle Cranmer, Victor Lee, Prabhat, Frank Wood. 2019. “Etalumis:
Bringing Probabilistic Programming to Scientific Simulators at Scale.” International
Conference for High Performance Computing, Networking, Storage, and Analysis - SC19

Extra slides

Calorimeter
For each particle in the final state coming from Sherpa:

1. Determine whether it interacts with the calorimeter at all
(muons and neutrinos don't)

2. Calculate the total mean number and spatial distribution of
energy depositions from the calorimeter shower
(simulating combined effect of secondary particles)

3. Draw a number of actual depositions from the total mean
and then draw that number of energy depositions according
to the spatial distribution

• Minimize

• Using stochastic gradient descent with Adam
• Infinite stream of minibatches

sampled from the model

Training objective and data for IC

50

Gelman-Rubin and autocorrelation formulae

51
From Eric B. Ford (Penn State): Bayesian Computing for Astronomical Data Analysis
http://astrostatistics.psu.edu/RLectures/diagnosticsMCMC.pdf

Gelman-Rubin and autocorrelation formulae

52
From Eric B. Ford (Penn State): Bayesian Computing for Astronomical Data Analysis
http://astrostatistics.psu.edu/RLectures/diagnosticsMCMC.pdf

