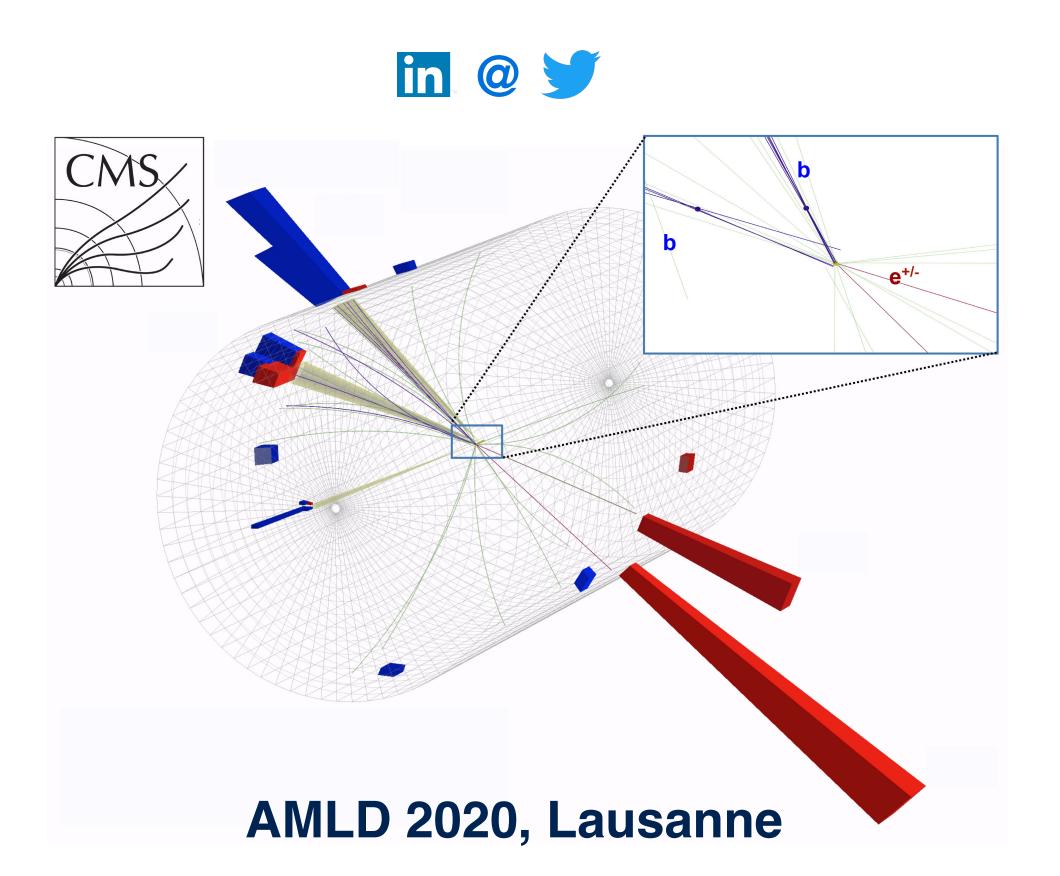
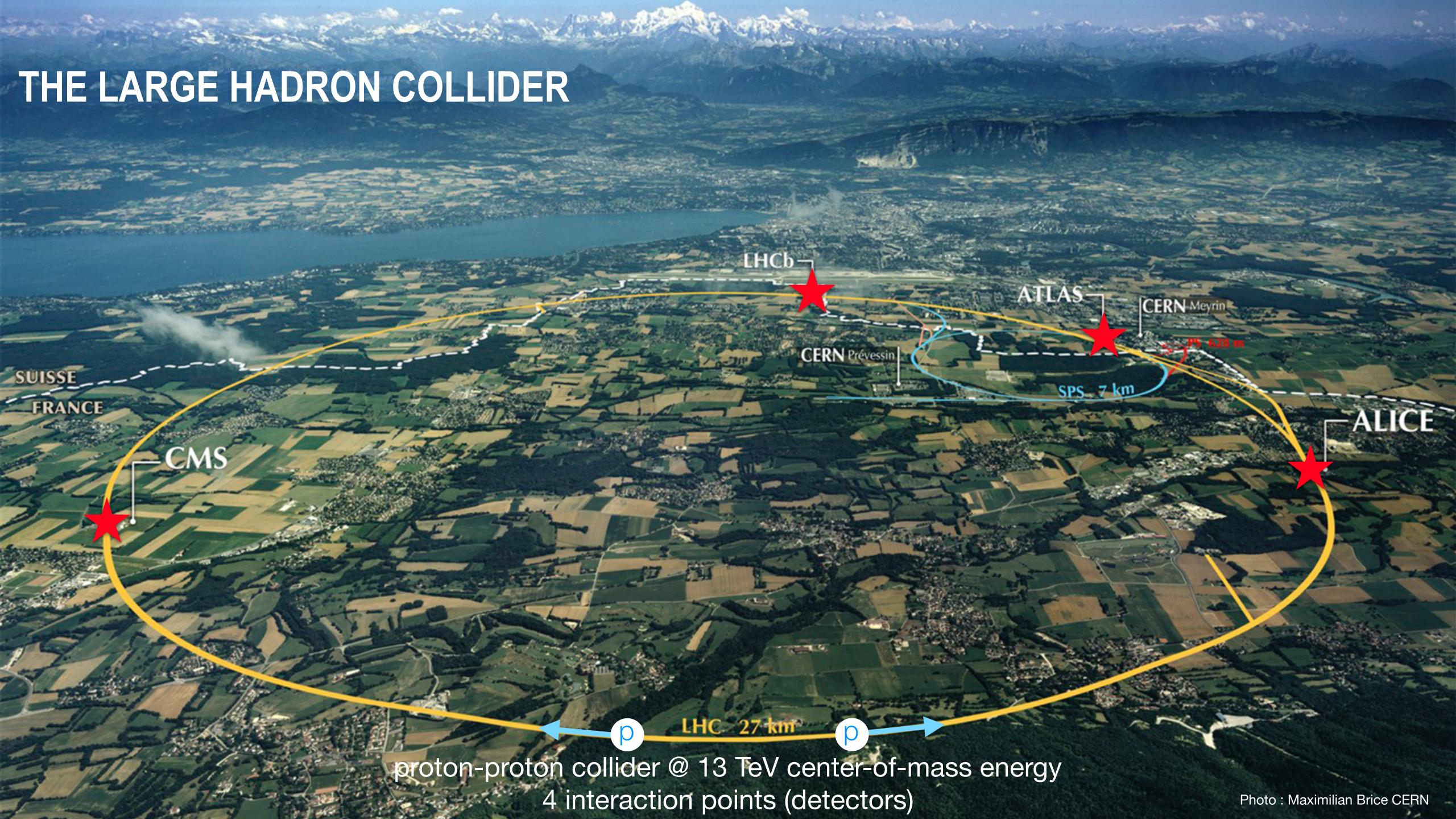
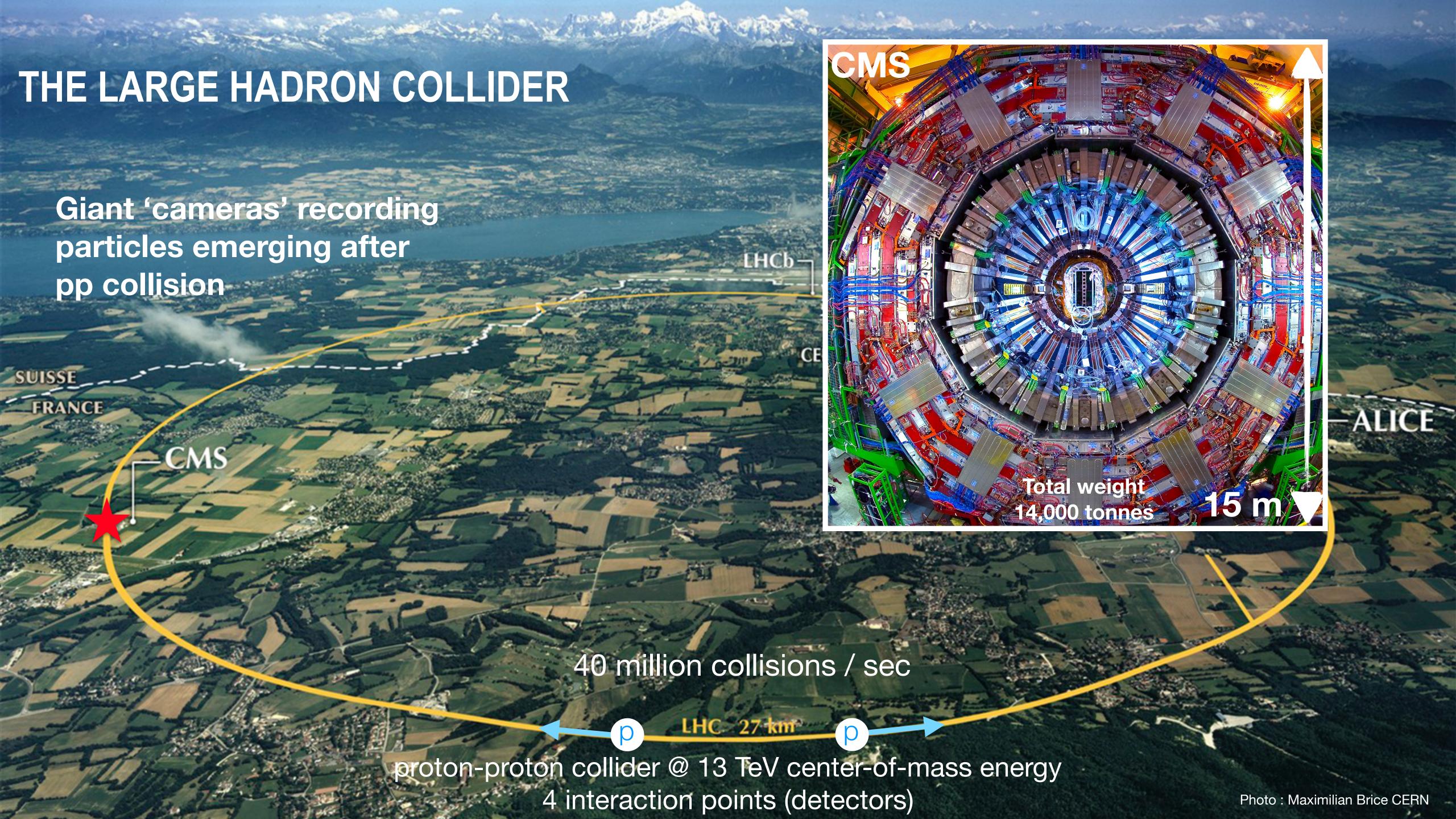


b-jet energy regression for the CMS experiment

Nadya Chernyavskaya - ETH Zurich on behalf of the CMS collaboration

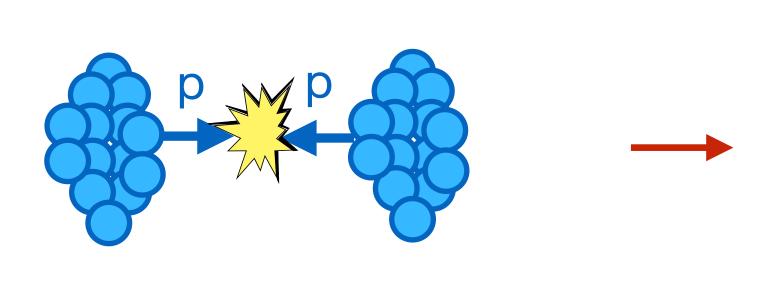




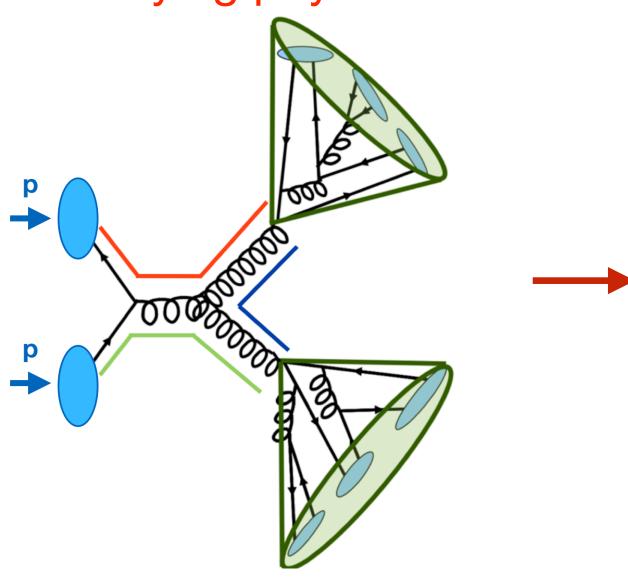


Physics at LHC

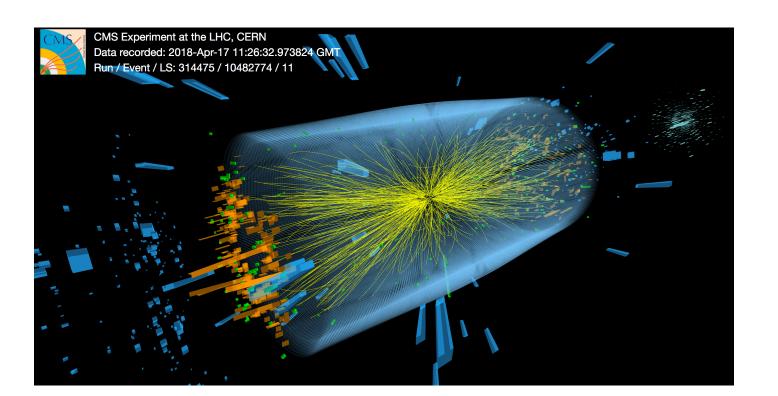
Protons collide

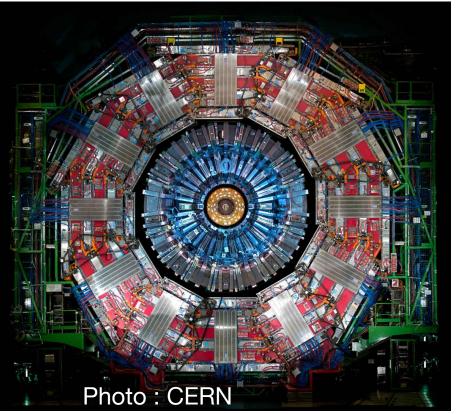


Underlying physics



Detection of particle produced & underlying physics extraction

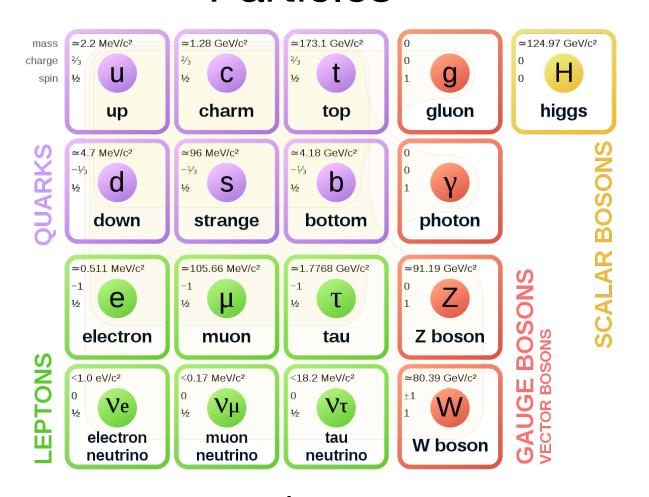




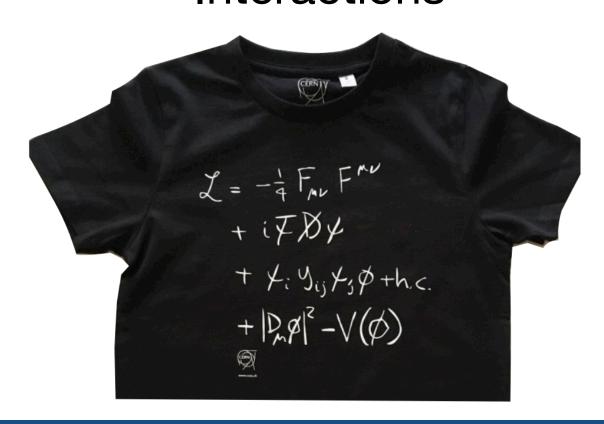
CMS detector

Underlying physics governed by Standard Model (and beyond?)

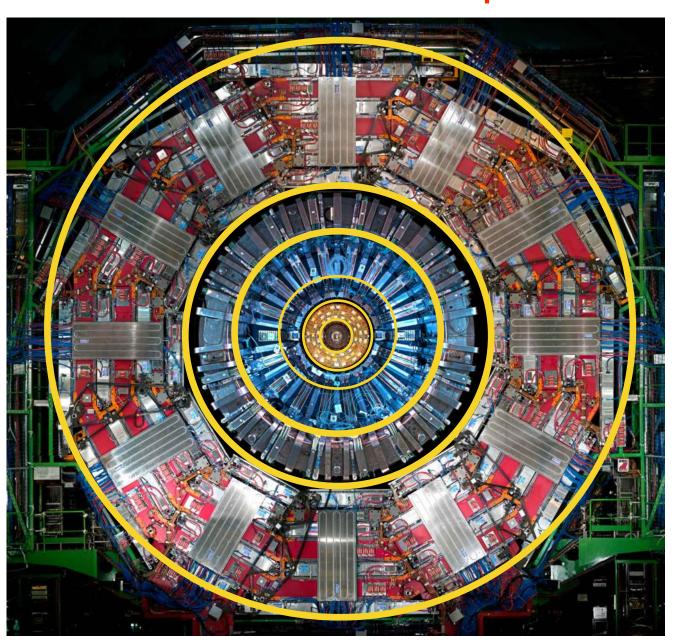
Particles



Interactions



CMS detects created particles

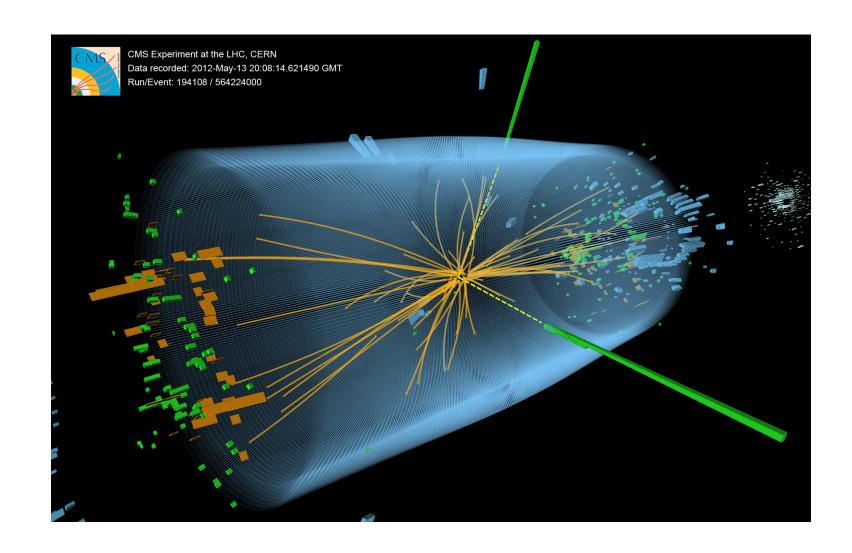


- Detector has onion structure, and is hermetic
- Consists of several subdetectors to detect different particles

Reconstruction of the events

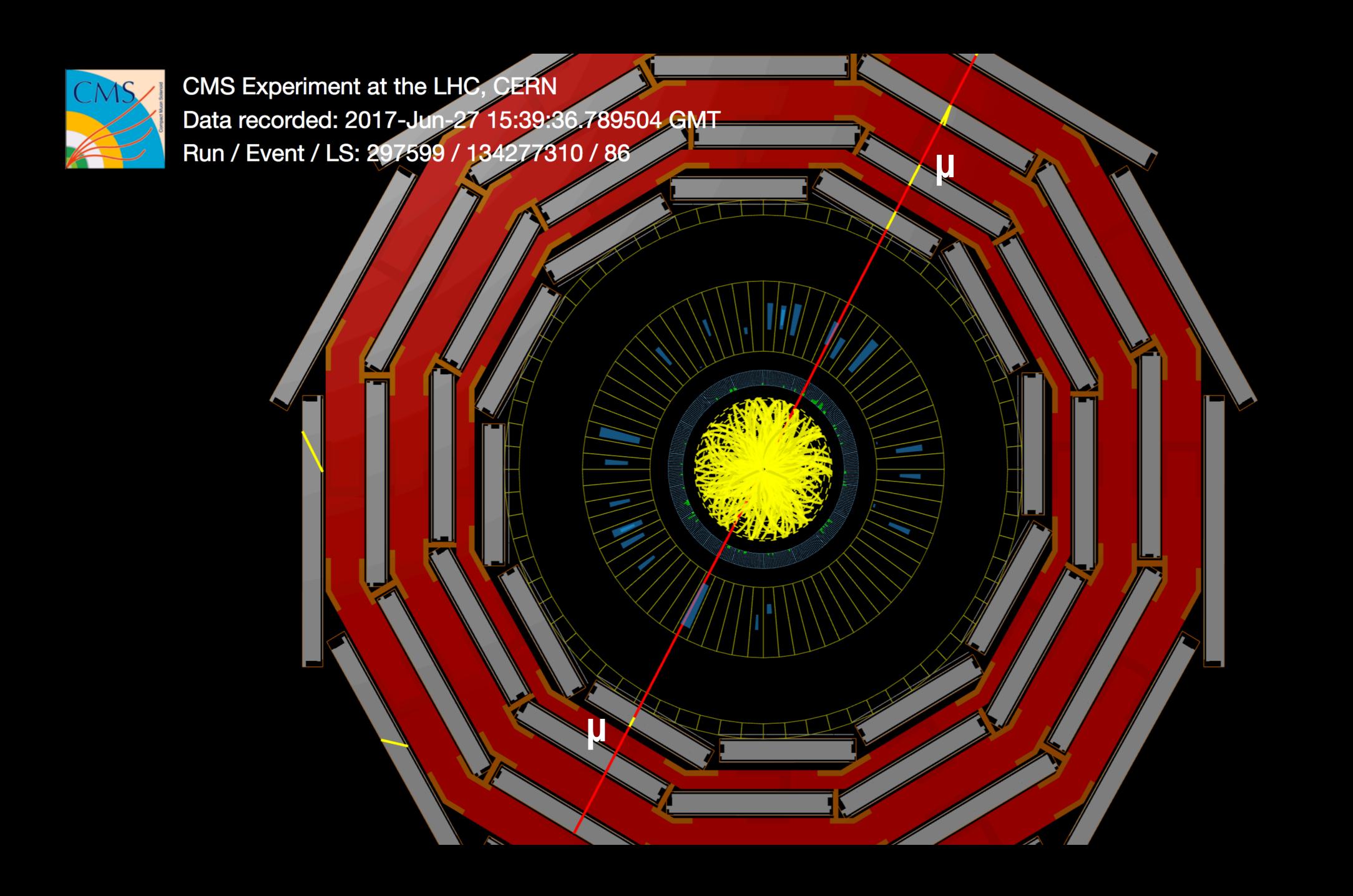
- The goal of the event reconstruction is to assign each energy deposit to individual particles
- From the reconstructed particles we can reconstruct full event kinematics and infer what underlying physics process led to such final state in the detector

From mess of particle hits



to a Nobel Prize

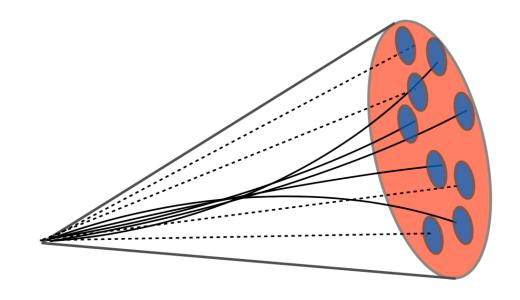
Discovery of the Higgs boson (2012)



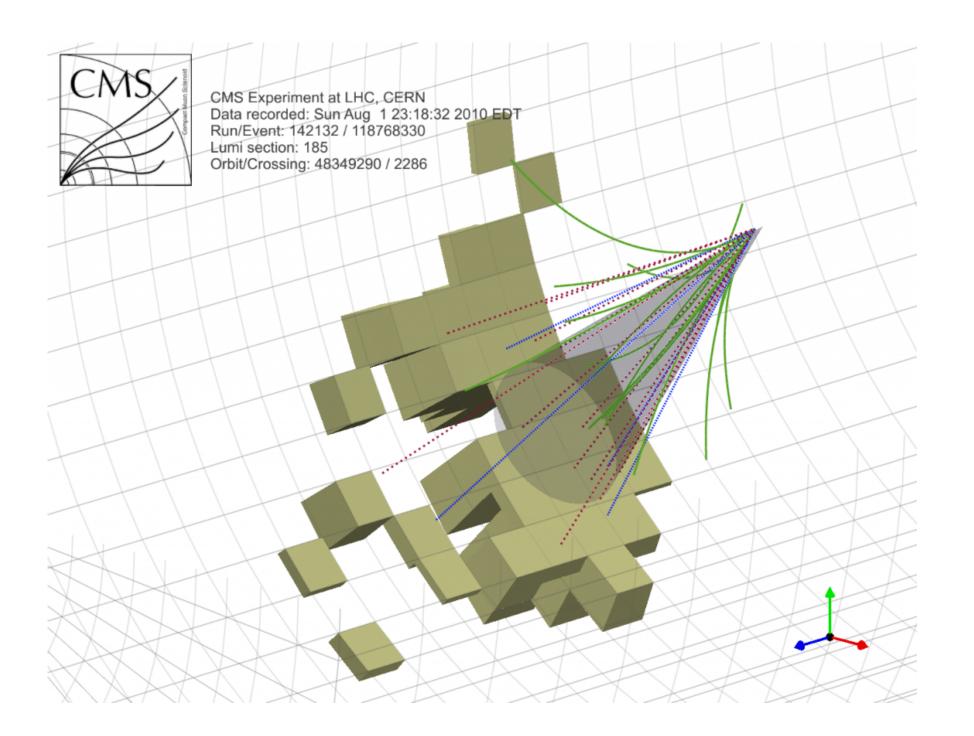
Jet reconstruction

Some particles are harder to reconstruct than others:

 Quarks and gluons cannot exist as free particles and when produced they create sprays of tens of particles called jets



Jets can be reconstructed from energy deposits and tracks



b jets and problem formulation

Jets arising from b quarks (b jets) are challenging to reconstruct because:

- b jets often decay to a final state with a **neutrino**, a particle with such a feeble interaction that it leaves the detector undetected
- Originate from secondary displaced vertex
- b jets tend to spread radially over a wider area than other light jets. This often leads to a leakage of energy outside of the jet clustering region

These properties of b-jets lead to an underestimation of the b jet energy and degradation of its resolution. However, b jets are important for many LHC physics analysis.

The better we can reconstruct the b-jet energy and estimate their resolution, the more sensitive we are to interesting physics!

b-jet energy regression in CMS

Idea: implement a multidimensional regression to infer the true b-jet energy from the reconstructed detector information

b-jet energy regression in CMS:

- Implemented in a Deep Neural Network
- Trained on a large set of 10⁸ MC simulated b jets
- Developed to improve resolution of b jets based on their composition and properties
- Improvement brought by this regression helped to reach the milestone observation of Higgs decay to bottom quarks H → bb

Higgs boson decay to bottom quarks

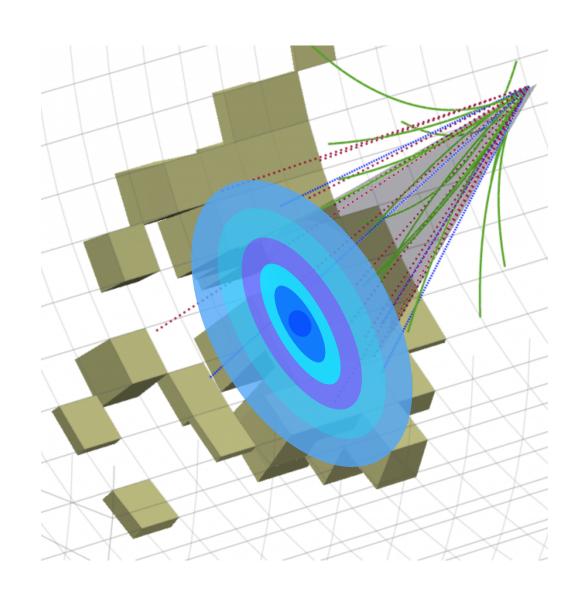
Phys. Rev. Lett. 121 (2018) 121801

b-jet energy regression in CMS

Multidimensional regression: infer true b-jet energy from the reconstructed detector information.

MC generate 100 M b jets and pass them through detector simulation.

- **DNN inputs** (simulated MC jets passed through detector simulation):
 - Combine information about jet's:
 - reconstructed kinematics
 - constituents: tracks, secondary vertices, and individual energy deposits reconstructed by the different subdetectors
 - composition and jet shapes: energy fractions carried by constituents (electrons, photons, charged hadrons, neutral hadrons, muons)



- **DNN target** (simulated MC jets original energy):
 - MC truth b-jet energy with included 'missing energy' from the undetected neutrinos divided by the detector reconstructed energy p_T^{gen}/p_T^{reco}

b-jet energy regression @ LHC

Regression Loss function

Loss function for DNN regression

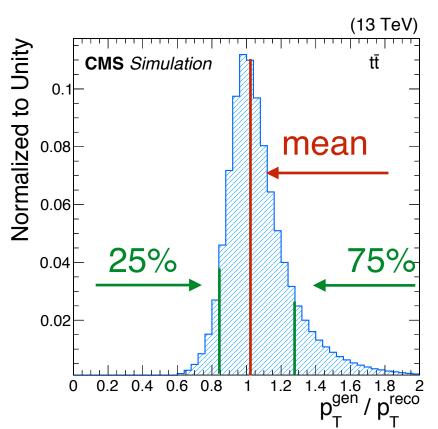
- Regression task: energy correction to improve resolution and provide a jet resolution estimator per-jet
- Regression target $y = \frac{p_T^{gen}}{p_T^{reco}}$, mean estimator \hat{y} , $z = y \hat{y}$
- To get energy correction we use the **Huber loss**:

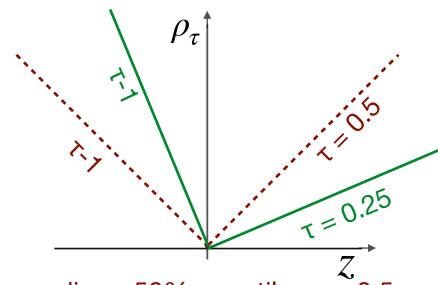
$$H_{\delta}(z) = \begin{cases} \frac{1}{2}z^2, & \text{if } |z| < \delta; \\ \delta \cdot |z| - \frac{1}{2}\delta^2, & \text{otherwise,} \end{cases}$$

• As resolution estimator use two quantile loss functions for 25% and 75% quantiles, τ - quantile:

$$\rho_{\tau}(z) = \begin{cases} \tau \cdot z, & \text{if } z > 0; \\ (\tau - 1) \cdot z, & \text{otherwise,} \end{cases}$$

Resolution distribution





median - 50% quantile : $\tau = 0.5$ 25% quantile : $\tau = 0.25$

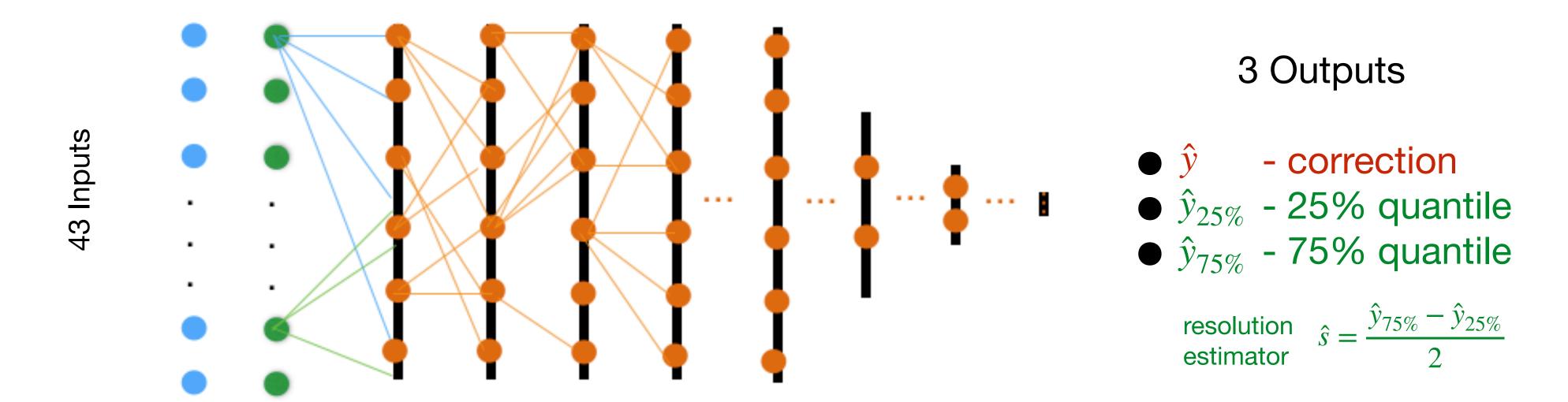
Joint loss function for correction (Huber) and resolution (quantiles):

$$Loss = H_1(y - \hat{y}(x)) + \rho_{0.25}(y - \hat{y}_{25\%}(x)) + \rho_{0.75}(y - \hat{y}_{75\%}(x))$$

b-jet energy regression @ LHC

DNN architecture

DNN architecture: Feed-forward fully connected DNN



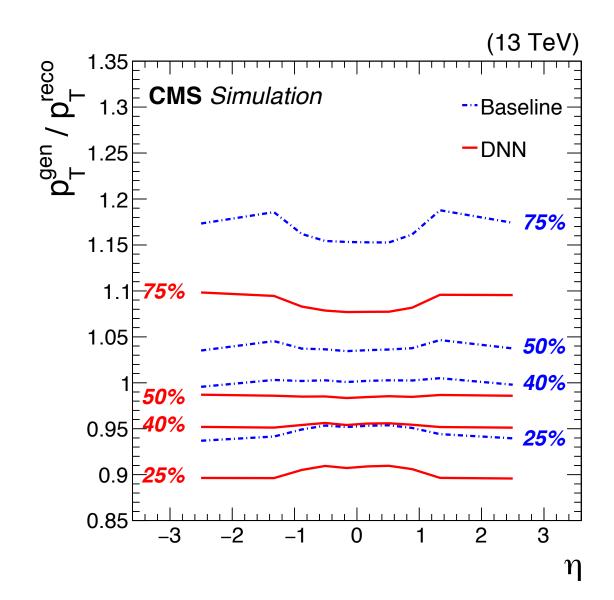
- DNN is implemented in Keras with TensorFlow backend
- Back-propagation using stochastic gradient descent with Adam optimizer
- Hyperparameters and architectures were optimized using randomized grid search
- 6 layers with # neurons : [1024, 1024, 1024, 512, 256, 128]
- The network was trained on a single NVIDIA GeForce GTX 1080 Ti

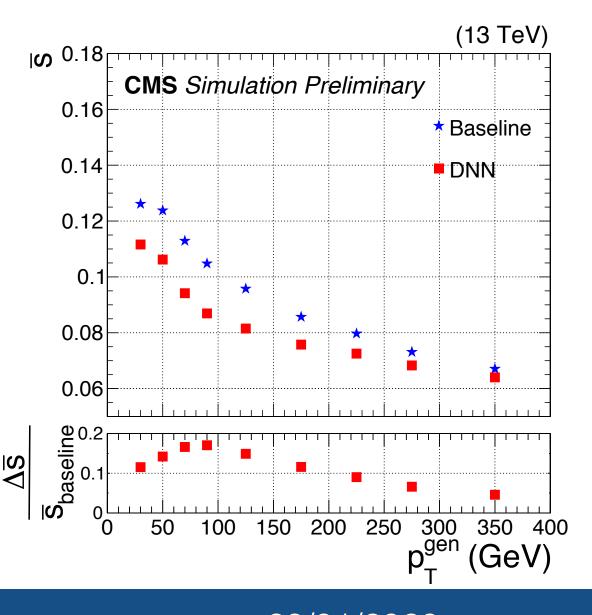
Results

- Evaluate b-jet energy scale p_Tgen/p_Treco after the application of the regression correction as a function of jet kinematics (quantiles 25%, 40%, 50%, 75%)
- Compare to before-regression p_Tgen/p_Treco
 - narrower distributions
 - flatter response

Quantify relative resolution improvement:

- Relative resolution estimated as $\bar{s} = \frac{s}{q_{40\%}} = \frac{q_{75\%} q_{25\%}}{2q_{40\%}}$
- After regression per-jet relative resolution is improved by
 ~13%
- Very similar performance achieved for b jets arising from different physics processes





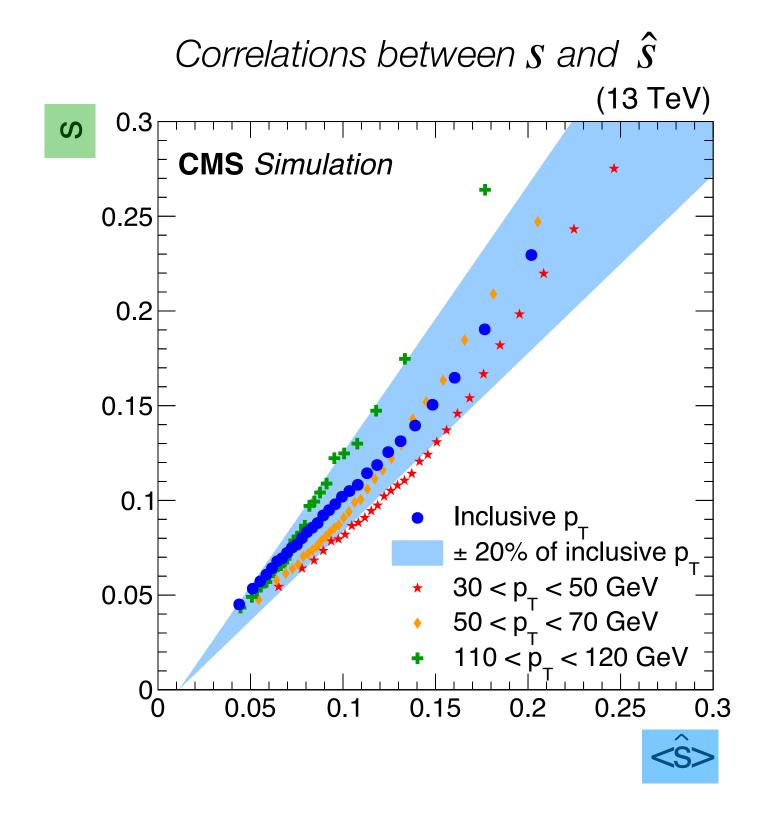
Resolution estimator

- Knowledge of jet resolution on a jet-by-jet basis can be exploited in physics analyses searching for resonant production of b jet pairs to increase their sensitivity
- Therefore, it is **important** that the resolution estimator provided as an output by our DNN correctly represents jet resolution

Check:

- Split the sample of jets into several equidistant quantiles of jet resolution estimator \hat{s}
- In each bin quantify the jet resolution $s=\frac{q_{75\%}-q_{25\%}}{2}$ using MC truth information
- Check if the two correspond to each other
- Repeat the same test in the bins of jet momentum p_T

Linear dependence confirms that our resolution estimator \hat{s} correctly represents the jet resolution s



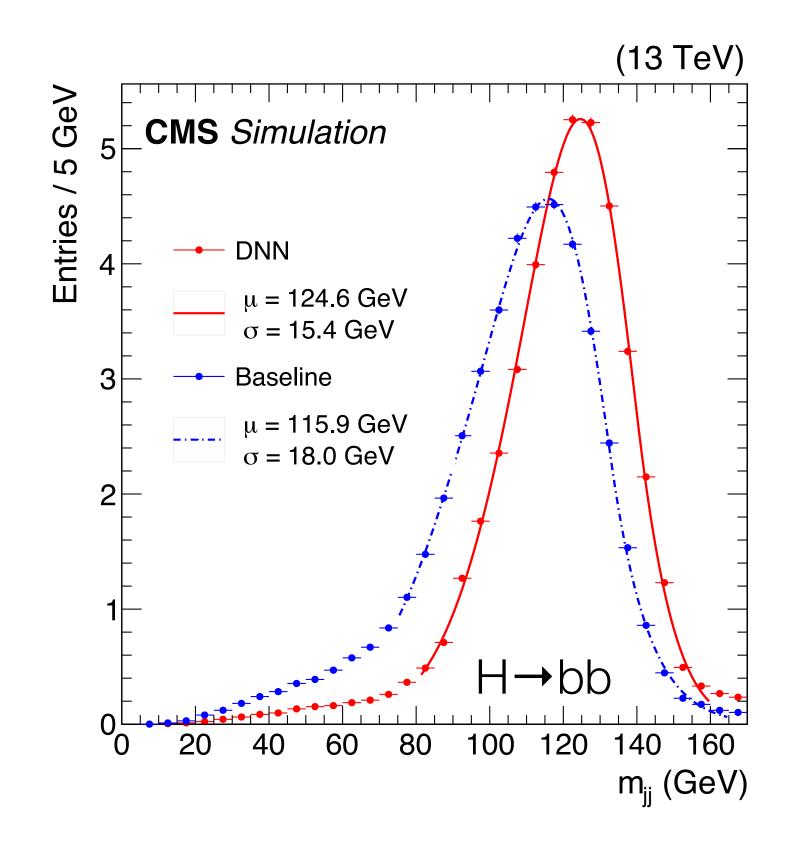
Dijet resolution improvement

- Many physics analyses use mass of a particle decaying to two b jets as a discriminating variable for signal extraction
 - e.g. reconstruct Higgs boson mass from its decay to b
 jets: H→bb



 Resolution improvement for dijet invariant mass is larger than for a single jet

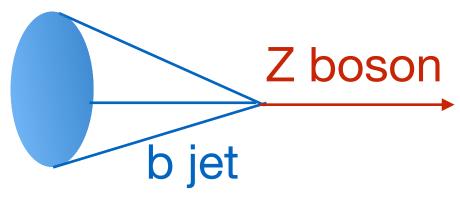
Significant improvement that helped to reach observation of Higgs decay to bottom quarks



20% improvement in dijet mass resolution

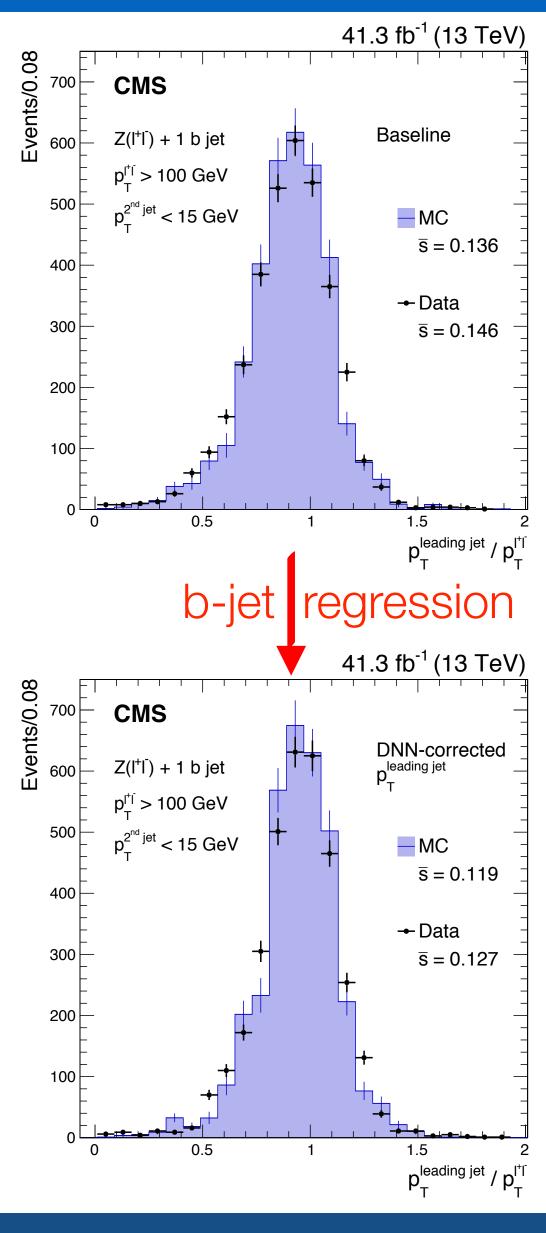
Validation on data

- Can this good performance be transferred from MC to the domain of LHC data?
- Select a high purity sample of events with a well reconstructed Z boson (leptonic decay) and b jet in data
- In such an event topology the Z boson and b jet are produced back-to-back and the better the b-jet resolution, the narrower the p_T balance distribution is



- Performance in data evaluated with p_T balance = $\frac{p_T}{p_T^Z}$
- Resolution improvement is consistent for MC and data and is 13 %

Resolution improvement achieved in MC is successfully transferred to the data domain!



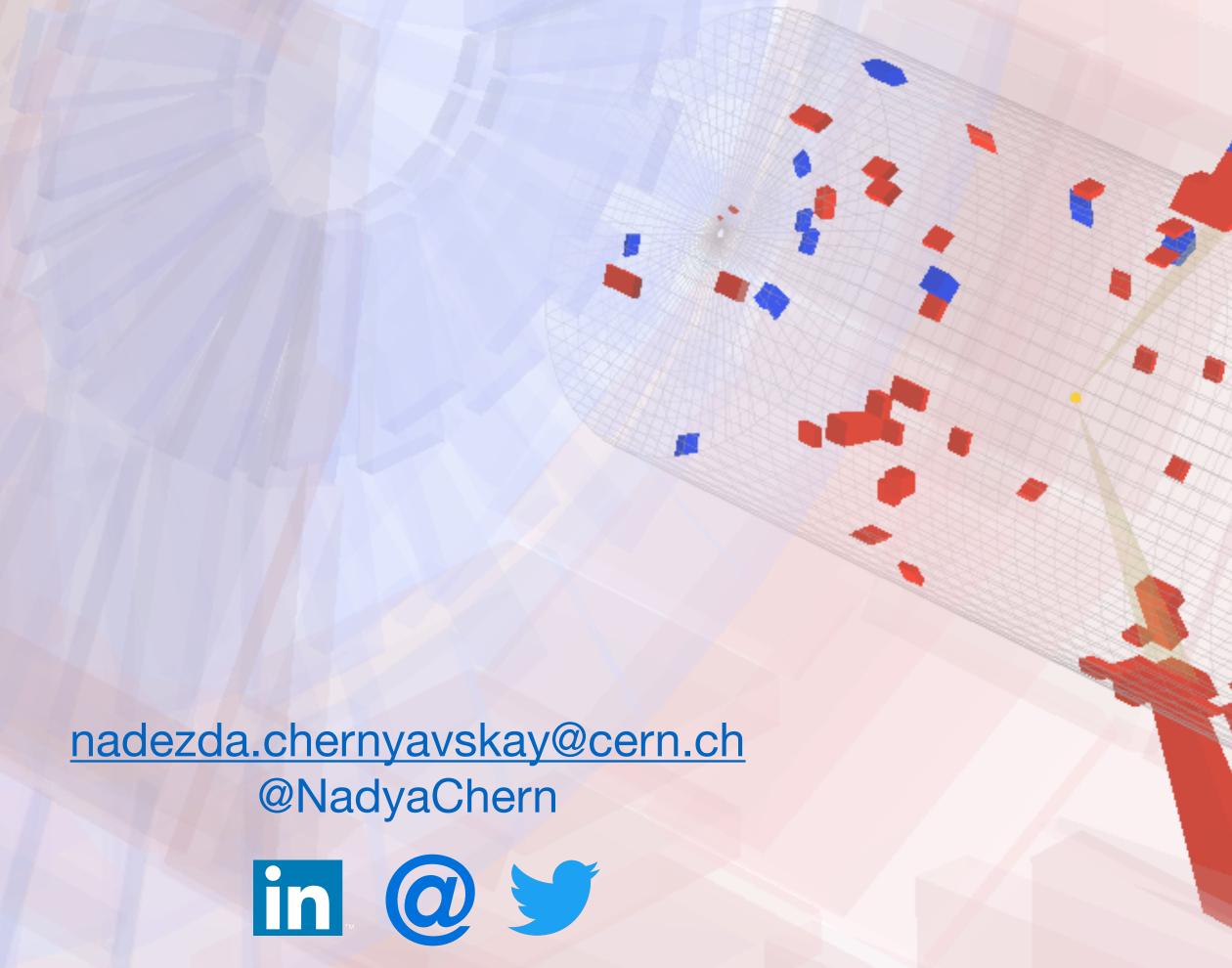
Summary

- We developed DNN based b-jet energy regression for the CMS experiment
- b-jet regression was trained using jet structure and composition information, and outputs energy correction and jet resolution estimator
- The technique was validated on data recorded by CMS at the LHC
- The regression was successfully applied to reach the observation of Higgs boson decay to bottom quarks <u>Phys. Rev. Lett. 121 (2018) 121801</u>
- Paper focusing on this regression is submitted to Computing and Software for Big Science, <u>CMS-HIG-18-027</u> and <u>arXiv-1912.06046</u>

b-jet energy regression @ LHC

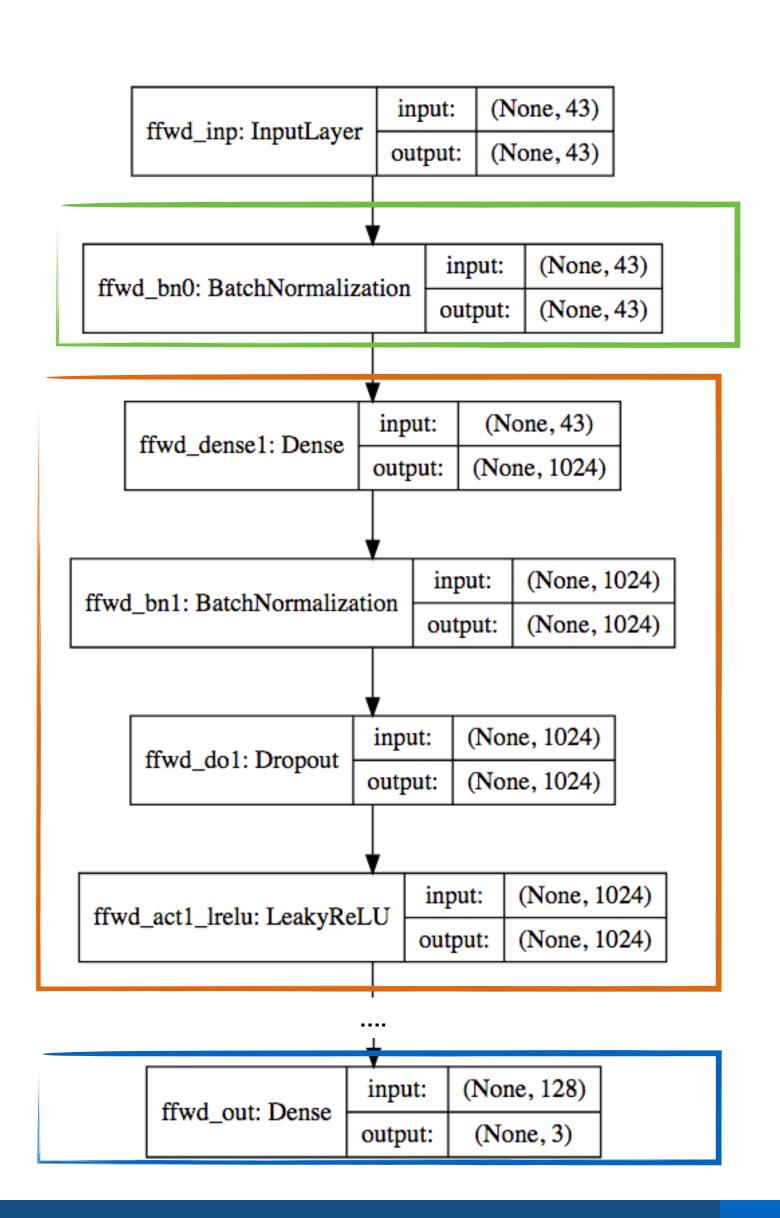
CMS Experiment at LHC, CERN
Data recorded: Tue May 5 11:05:27 2015 CEST
Run/Event: 243484 / 35552557
Lumi section: 50
Orbit/Crossing: 12904927 / 208

Thank you!



Additional Material

DNN architecture



DNN architecture: Feed-forward fully connected NN

- Input layer
- Batch normalization → internal data standardization
- Each hidden layer has 4 operations :
 - Linear transformation
 - Batch normalization
- Dropout
- Non-linear activation function
 - Leaky ReLU activation with $\alpha = 0.2$

. . . .

 Output : target is standardized (to zero-mean unit-variance)