ETH zürich

High-Fidelity MR-Me: Lightweight Capture of Personalized Neural Animatable Avatars

Chen Guo

Motivation

Immersive Telepresence

[TM & © Lucasfilm Ltd.]

- High requirement of devices
- Tons of manual efforts

PINA: Learning a Personalized Implicit Neural Avatar from a Single RGB-D Video Sequence

Z. Dong^{*}, C. Guo^{*}, J. Song, X. Chen, A. Geiger, O. Hilliges CVPR 2022

Input: RGB-D sequence

Input: RGB-D sequence

Reconstruction

Side View

Animation

Challengeallevfusepphrfiahtespatemoissyiand insingleptetnsistent representation

Implicit Canonical Representation

Method – Loss

Animation

Results on Real-world Data

Subject I:

Input

Reconstruction

Side View

Animation

Subject 2:

0° 120° 240°~

Input

Reconstruction

Side View

Animation

Speed Vault (The subject jumps onto a platform above the ground.) Subject 3

0° 120° 240°

Reconstruction

Side View

Animation

Hip-hop Dance

-

Subject 4

Reconstruction

Side View

Animation

Ablation Studies and Comparisons

Ablation – joint optimization of pose and shape

Ablation – deformation model

Without learned skinning weights, the deformed regions can be noisy and display visible artifacts.

Ablation – deformation model

Without pose features, the shape network cannot represent dynamically changing surface details of the blazer.

Comparisons on CAPE (Animation)

Avatar exhibition

Limitations and Future Research Directions

Limitations – handling loose clothing

Reference image

Limitations – learning textures

PINA

RenderPeople

Learning a Personalized Implicit Neural Avatar from a Single RGB Video Sequence :

<u>Learning a Personalized Implicit Neural Avatar from a Single RGB Video Sequence :</u>

Experiment on synthetic data (rendered):

Input video

Learning a Personalized Implicit Neural Avatar from a Single RGB Video Sequence :

Geometry:

Canonical Space

Posed Space

Learning a Personalized Implicit Neural Avatar from a Single RGB Video Sequence :

Texture:

Thank you!

