Deep Reinforcement Learning and Complex Environments

2010: Speech Recognition

2010: Speech Recognition

Audio→	Deep Net	→ Text
2012: Cor	nputer Vision	
Pixels→	Deep Net	I - Labels

2010: Speech Recognition

Audio→	Deep Net	→ Text		
2012: Computer Vision				
Pixels→	Deep Net	I – Labels		
2014: Machine Translati	on			
Text →	Deep Net	I → Text		

2010: Speech Recognition

slide from V. Vanhoucke

Robotics is different

→ LABELS

General Artificial Intelligence

Robotics is different

SENSORS ACTIONS

General Artificial Intelligence

Deep Reinforcement Learning

General Artificial Intelligence

General Atari Player

[Mnih et al, Playing Atari with Deep Reinforcement Learning, 2014]

9DOF Random reacher

- Can deep RL agents learn multiple tasks?
- Can deep RL agents learn efficiently?
- Can deep RL agents learn from real data?
- Can deep RL agents learn continuous control?

Lab Mazes

Multiple Tasks & Lifelong learning StreetLearn

Parkour

Lifelong Learning - 3 challenges

- 1. Catastrophic forgetting
- 2. Positive transfer
- 3. Specialization and generalization

- Well-known phenomenon
- Especially severe in Deep RL

💿 DeepMind

- Well-known phenomenon
- Especially severe in Deep RL

Elastic Weight Consolidation

James Kirkpatrick et al (2017), "Overcoming Catastrophic Forgetting in NNs"

Progressive Nets

- add columns for new tasks
- freeze params of learnt columns
- layer-wise neural connections
- → capacity for task-specific features
 → enables deep compositionality
 → precludes forgetting

Andrei Rusu et al (2016), "Progressive Neural Networks"

Progressive Nets

- add columns for new tasks
- freeze params of learnt columns
- layer-wise neural connections
- → capacity for task-specific features
 → enables deep compositionality
 → precludes forgetting

Andrei Rusu et al (2016), "Progressive Neural Networks"

Progressive Nets

- add columns for new tasks
- freeze params of learnt columns
- layer-wise neural connections
- → capacity for task-specific features
 → enables deep compositionality
 → precludes forgetting

Andrei Rusu et al (2016), "Progressive Neural Networks"

Sim-to-Real

Distral (Distill and Transfer Learning)

- Task-specific networks plus shared network
- KL Divergence constraint
- Regularisation in policy space rather than parameter space
- Shared policy as a communication channel between tasks

pMind Yee Whye Teh et al (2017), "Distral: Robust Multitask Reinforcement Learning"

Distral (Distill and Transfer Learning)

- Task-specific networks plus shared
 network
- Regularisation in policy space rather than parameter space
- Shared policy as a communication channel between tasks
- → *Distillation* of knowledge into shared model enables *transfer* to tasks

lind Yee Whye Teh et al (2017), "Distral: Robust Multitask Reinforcement Learning"

Distral (Distill and Transfer Learning)

- Task-specific networks plus shared network
- Regularisation in policy space rather than parameter space
- Shared policy as a communication channel between tasks
- → *Distillation* of knowledge into shared model enables *transfer* to tasks
- → *Regularisation* of shared model gives stability and robustness

Lab Mazes & Auxiliary Learning Multiple Tasks & Lifelong learning StreetLearn

Parkour

Navigation mazes

3600 steps/episode

10800 steps/episode

Game episode:

- 1. Random start
- 2. Find the goal (+10)
- 3. Teleport randomly
- 4. Re-find the goal (+10)
- 5. Repeat (limited time)

Variants:

Static maze, static goal Static maze, random goal Random maze

1. Convolutional encoder and RGB inputs

- 1. Convolutional encoder and RGB inputs
- 2. Single or stacked LSTM with skip connection

- 1. Convolutional encoder and RGB inputs
- 2. Stacked LSTM
- 3. Additional inputs (reward, action, and velocity)

- 1. Convolutional encoder and RGB inputs
- 2. Stacked LSTM
- 3. Additional inputs (reward, action, and velocity)
- 4. RL: Asynchronous advantage actor critic (A3C)

- 1. Convolutional encoder and RGB inputs
- 2. Stacked LSTM
- 3. Additional inputs (reward, action, and velocity)
- 4. RL: Asynchronous advantage actor critic (A3C)
- 5. Aux task 1: Depth predictors

- 1. Convolutional encoder and RGB inputs
- 2. Stacked LSTM
- 3. Additional inputs (reward, action, and velocity)
- 4. RL: Asynchronous advantage actor critic (A3C)
- 5. Aux task 1: Depth predictor
- 6. Aux task 2: Loop closure predictor

Variations in architecture

Results on large maze with static goal

+1

+10

Lab Mazes & Auxiliary Learning Multiple Tasks & Lifelong learning StreetLearn & Real woRld RL Parkour

Navigation mazes in the real world?

structure

observation

observation

structure

observation

- RGB image cropped from panorama (84x84)
- Goal location

Actions: move to next node, rotate view 20° or 60°

left or right?

Looks like a road, but it's a park entrance

west side highway

really, tunnels!

StreetLearn: The Courier Task

1. Spawn randomly and navigate to a random target location.

2. Start receiving reward when close to target (within 400m).

3. If target is reached (100m), navigate to a new random target.

Agent architecture

Lab Mazes & Auxiliary Learning Multiple Tasks & Lifelong learning StreetLearn & Real woRld<u>RL</u>

Parkour & Continuous control

Proprioceptive and exteroceptive observations

Proprioceptive ---"near the body":

- Joint angles & velocities
- Touch sensors
- Positions and velocities of limbs in body coordinate frame

Proprioceptive and exteroceptive observations

Proprioceptive -- "near the body":

- Joint angles & velocities
- Touch sensors
- Positions and velocities of limbs in body coordinate frame

Exteroceptive --"away from the body":

- Position / velocity in global coordinate frame
- Task-related (e.g. goal position)
- Vision

Rich environments for skill discovery: setup

Training

- Proximal policy optimization [Schulman et al.]
- Batched policy gradient
- Trust region ("gradient-based TRPO")
- High-performance implementation:
 - Distributed (multiple workers)
 - Synchronous gradient updates

Single uniform reward, based on forward progress

Nicolas Heess, et al. 2017: "Emergence of Locomotion Behaviours in Rich Environments"

Humanoid: learned behaviors

27 DoFs 21 actuators

Nicolas Heess, et al. 2017: "Emergence of Locomotion Behaviours in Rich Environments"

- Can deep RL agents learn multiple tasks?
- Can deep RL agents learn efficiently?
- Can deep RL agents learn from real data?
- Can deep RL agents learn continuous control?

Overcoming catastrophic forgetting in NNs, 2016

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, Raia Hadsell

Progressive Neural Networks, 2016

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, Raia Hadsell

Distral: Robust Multitask RL, 2017

Yee Whye Teh, Victor Bapst, Wojciech Marian Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell, Nicolas Heess, Razvan Pascanu

Learning to navigate in complex environments, 2017

Piotr Mirowski*, Razvan Pascanu*, Fabio Viola, Hubert Soyer, Andrew J. Ballard, Andrea Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, Dharshan Kumaran, Raia Hadsell

Learning and transfer of modulated locomotor

controllers, 2016

Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Riedmiller, David Silver

Emergence of Locomotion Behaviours in Rich Environments, 2017

Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, S. M. Ali Eslami, Martin Riedmiller, David Silver

Thank you!

