Topological Adventures in Machine Learning

Applied Machine Learning Days
28 January 2020

Blue Brain Project

Topological Data Analysis (TDA)

Guiding philosophy of TDA

The shape of a data set, encoded by a topological signature, should reveal important relations among the data points with the help of machine learning.

The usual TDA workflow

Step 1: Data to Point Cloud

Step 2: Point cloud to nested complexes

Step 2: Point cloud to nested complexes

L. Munch, 2019.

Step 3: Nested complexes to barcode

Barcodes vs persistence diagrams

Stability

- The set of barcodes/persistence diagrams can be equipped with a variety of earthmover-type distances: the Wasserstein distances of L_{p} type and the bottleneck distance of L_{∞}-type.
- Most reasonable known instantiations of the TDA pipeline are Lipschitz continuous with respect to Hausdorff distance on point clouds and bottleneck distance on persistence diagrams.

Practicalities

- There are extensive libraries of software, mostly open source, for TDA computations (e.g., GUDHI, Ripser, Flagser, Giotto,...).
- There exist "inverse analysis" tools for interpreting results of TDA computations (e.g., work of Hiraoka et al.).

From TDA to ML

Strategies for featurization

- Problem: Cannot compute statistics in the space of barcodes or the space of persistence diagrams.
- Solution:
- Define a Lipschitz-continuous mapping from the space of barcodes/persistence diagrams to a vector space \mathcal{V} equipped with an inner product.
- Compute statistics in \mathcal{V} !
- [Leygonie-Oudot-Tillmann, 2019] New differentiable approach, enabling the use of gradient descent.

Betti curves

Bar code for cavities of dimension k

Nested complex to Betti curve

Extracting numerical features

Bardin, et al., Network Neuroscience, 2019.

Persistence landscapes

- Barcodes also give rise to persistence landscapes.

$$
\lambda=\left\{\lambda_{k}: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\} \mid k \in \mathbb{N}\right\}
$$

- The L2-landscape distance between barcodes B and B^{\prime} with associated landscapes $\boldsymbol{\lambda}$ and $\boldsymbol{\lambda}^{\prime}$:

$$
\Lambda\left(B, B^{\prime}\right)=\left\|\lambda-\lambda^{\prime}\right\|_{2}=\sum_{k=1}^{\infty}\left(\int\left|\lambda_{k}(t)-\lambda_{k}^{\prime}(t)\right|^{2} d t\right)^{\frac{1}{2}}
$$

Persistence curves

Name	Notation	$\psi(b, d, t)$	T
Betti	$\boldsymbol{\beta}(\boldsymbol{D})$	1	sum
Midlife	$\operatorname{ml}(D)$	$(b+d) / 2$	sum
Life	$\ell(D)$	$d-b$	sum
Multiplicative Life	$\operatorname{mul}(D)$	d / b	sum
Life Entropy [2]	$\operatorname{le}(D)$	$-\frac{d-b}{\sum(d-b)} \log \frac{d-b}{\sum(d-b)}$	sum
Midlife Entropy	$\operatorname{mle}(D)$	$-\frac{d+b}{\sum(d+b)} \log \frac{d+b}{\sum(d+b)}$	sum
Mult. Life Entropy	$\operatorname{mule}(D)$	$\frac{-\frac{d / b}{\sum(d / b)} \log \frac{d / b}{\sum(d / b)}}{\sin } \operatorname{sum}^{\text {} k \text {-th Landscape [5] }}$	$\lambda_{k}(D)$
$\min \{t-b, d-t\}$	$\max _{k}$		

Simultaneous generalization of Betti curves and persistence landscapes

Persistence images

- Smooth the PD: replace each point by a Gaussian kernel, then sum
- Discretize

Kanari, et al., Neuroinformatics, 2018.

ML methods applied to featurized TDA

- Decision tree
- Random forest
- Support Vector Machine
- CNN
- Graph CNN

Examples

- Topological characterization of neuron morphologies
- Automated classification of dynamic regimes in networks of neurons
- High-throughput screening of nanoporous materials

