Topological Adventures in Machine Learning

Applied Machine Learning Days 28 January 2020

Blue Brain Project

Topological Data Analysis (TDA)

Guiding philosophy of TDA

The shape of a data set, encoded by a topological signature, should reveal important relations among the data points with the help of machine learning.

The usual TDA workflow

Step 1: Data to Point Cloud

L. Munch, 2019.

1.5

1.0

0.5

0.0

‡0.5

∔1.0

Step 3: Nested complexes to barcode

Otter et al., arXiv, 2016.

Barcodes vs persistence diagrams

Stability

- The set of barcodes/persistence diagrams can be equipped with a variety of earthmover-type distances: the Wasserstein distances of L_p -type and the bottleneck distance of L_{∞} -type.
- Most reasonable known instantiations of the TDA pipeline are Lipschitz continuous with respect to Hausdorff distance on point clouds and bottleneck distance on persistence diagrams.

Practicalities

- There are extensive libraries of software, mostly open source, for TDA computations (e.g., GUDHI, Ripser, Flagser, Giotto,...).
- There exist "inverse analysis" tools for interpreting results of TDA computations (e.g., work of Hiraoka et al.).

From TDA to ML

Strategies for featurization

 Problem: Cannot compute statistics in the space of barcodes or the space of persistence diagrams.

• Solution:

- Define a Lipschitz-continuous mapping from the space of barcodes/persistence diagrams to a vector space ${\mathcal V}$ equipped with an inner product.
- Compute statistics in \mathcal{V} !
- [Leygonie-Oudot-Tillmann, 2019] New differentiable approach, enabling the use of gradient descent.

Betti curves

Bar code for cavities of dimension k

Betti_k curve

Nested complex to Betti curve

Bardin, et al., Network Neuroscience, 2019.

Extracting numerical features

Bardin, et al., Network Neuroscience, 2019.

Persistence landscapes

• Barcodes also give rise to *persistence landscapes*.

$$\lambda = \left\{ \lambda_k : \mathbb{R} \to \mathbb{R} \cup \{\infty\} \mid k \in \mathbb{N} \right\}$$

• The L2-landscape distance between barcodes B and B' with associated landscapes λ and λ' :

$$\Lambda(B,B') = \|\lambda - \lambda'\|_2 = \sum_{k=1}^{\infty} \left(\int |\lambda_k(t) - \lambda'_k(t)|^2 dt \right)^{\frac{1}{2}}$$

Bubenik, J Mach Learn Res (2015) Dlotko & Bubenik, J Symbolic Comp (2017)

Persistence curves

Name	Notation	$\psi(b,d,t)$	Т
Betti	eta(D)	1	sum
Midlife	$\mathbf{ml}(D)$	(b+d)/2	sum
Life	$\boldsymbol{\ell}(D)$	d-b	sum
Multiplicative Life	$\mathbf{mul}(D)$	d/b	sum
Life Entropy [2]	$\mathbf{le}(D)$	$-\frac{d-b}{\sum(d-b)}\log\frac{d-b}{\sum(d-b)}$	sum
Midlife Entropy	$\mathbf{mle}(D)$	$-\frac{d+b}{\sum(d+b)}\log\frac{d+b}{\sum(d+b)}$	sum
Mult. Life Entropy	$\mathbf{mule}(D)$	$-\frac{d/b}{\sum (d/b)}\log \frac{d/b}{\sum (d/b)}$	sum
k-th Landscape [5]	$oldsymbol{\lambda}_{oldsymbol{k}}(D)$	$\min\{t-b,d-t\}$	\max_k

Simultaneous generalization of Betti curves and persistence landscapes

Persistence images

- Smooth the PD: replace each point by a Gaussian kernel, then sum
- Discretize

Kanari, et al., Neuroinformatics, 2018.

ML methods applied to featurized TDA

- Decision tree
- Random forest
- Support Vector Machine
- CNN
- Graph CNN

Examples

- Topological characterization of neuron morphologies
- Automated classification of dynamic regimes in networks of neurons
- High-throughput screening of nanoporous materials

