Intrinsic Dimension of quantum data sets: Data-Mining criticality and emergent simplicity

Tiago Mendes Santos

Universität Augsburg University

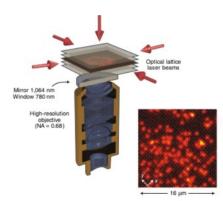
• mpipks

TMS, X. Turkeshi, M. Dalmonte, A. Rodriguez, PRX 11, 011040 (2021)

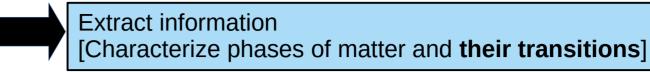
TMS, A. Angelone, A. Rodriguez, R. Fazio, M Dalmonte, PRX Quantum 2, 030332 (2021)

Handwriting

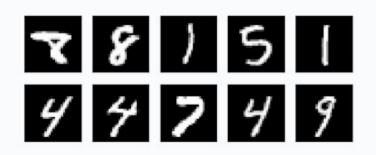
Physical data sets



Large **[high-dimensional]** data sets

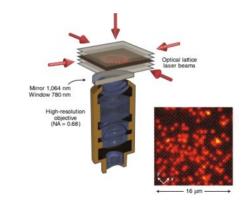


Handwriting



0	0	0	1	0	1	1	0
0	1	1	1	0	1	0	1
0	1	0	0	1	0	0	1

Physical data sets [Many-body physics]



Characterize phases of matter and their transitions

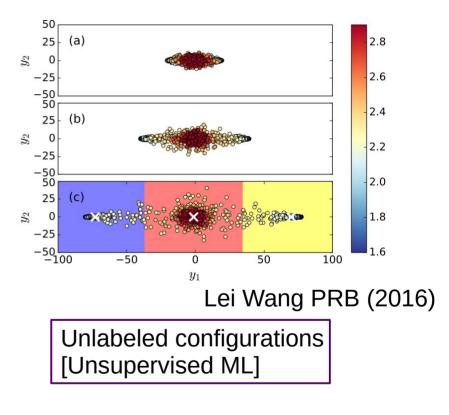
Machine learning phases of matter

Juan Carrasquilla^{1*} and Roger G. Melko^{1,2}

Labeled configurations [Supervised ML]

Learning phase transitions by confusion

Evert P. L. van Nieuwenburg*, Ye-Hua Liu and Sebastian D. Huber



Characterize phases of matter and their transitions

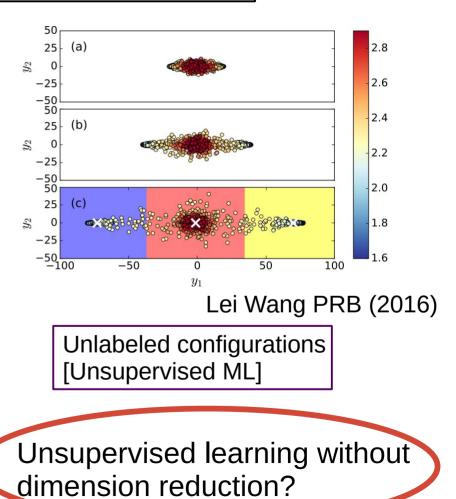
Machine learning phases of matter

Juan Carrasquilla^{1*} and Roger G. Melko^{1,2}

Labeled configurations [Supervised ML]

Learning phase transitions by confusion

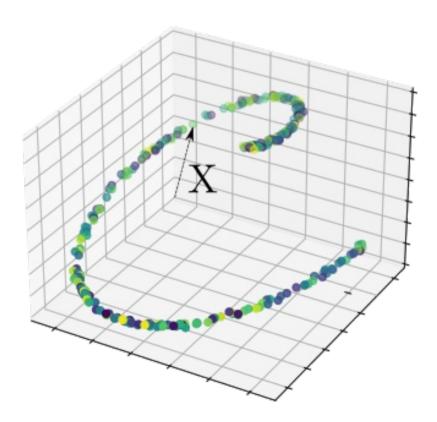
Evert P. L. van Nieuwenburg*, Ye-Hua Liu and Sebastian D. Huber



Intrinsic dimension (ID)

Data set lies in a manifold whose ID is lower than the number of coordinates

$$\vec{X} = (x_1, x_2, x_3)$$
$$\mathsf{ID} = \mathsf{1}$$

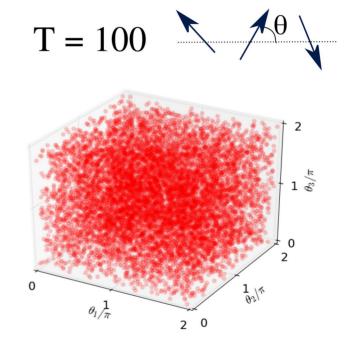


Partition-function data sets

$$Z = \sum_{\vec{X}} e^{-\beta E(\vec{X})}$$

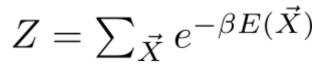
3-spin XY model

$$T = 0$$



$$E(\{\vec{\theta}\}) = -J\sum_{\langle i,j\rangle} \cos(\theta_i - \theta_j) \qquad \qquad \vec{\theta} = (\theta_1, \theta_2, \theta_3)$$

Partition-function data sets

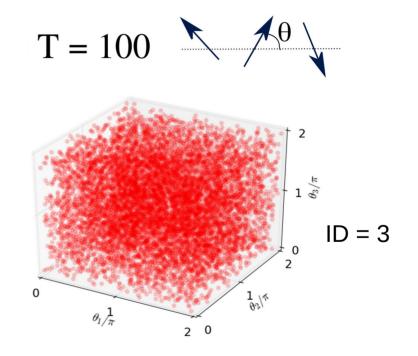


3-spin XY model

$$T = 0$$

$$ID = 1$$

$$\int_{0}^{2} \int_{0}^{2} \int_{0}^{$$



 \rightarrow How to estimate the ID

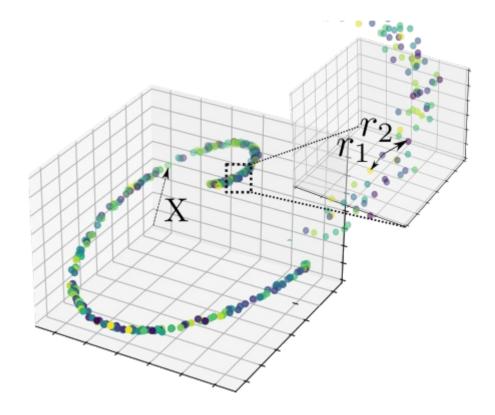
→ Quantum data sets[Quantum Monte Carlo]

 \rightarrow ID and quantum phase transitions (QPTs)

Intrinsic dimension (ID)

 $ID \rightarrow Nearest neighbors(NN)-based estimator$

Statistics of NN distances [e.g., Euclidian, Hamming]



Intrinsic dimension (ID)

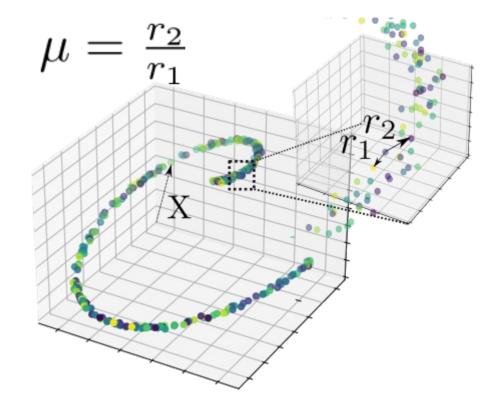
 $ID \rightarrow Nearest neighbors(NN)-based estimator$

Statistics of NN distances [e.g., Euclidian, Hamming]

Probability distribution function

$$f(\mu) = I_d \mu^{-1 - I_d}$$

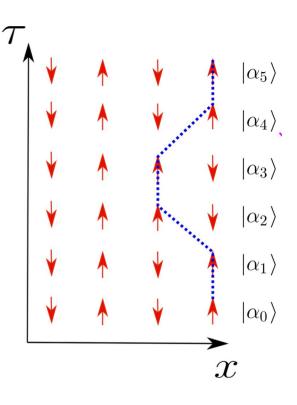
Elena Facco et. al. Scientific Reports (2017)



 $Z=\sum_{\alpha}\left\langle \alpha\right|e^{-\beta\hat{H}}\left|\alpha\right\rangle$

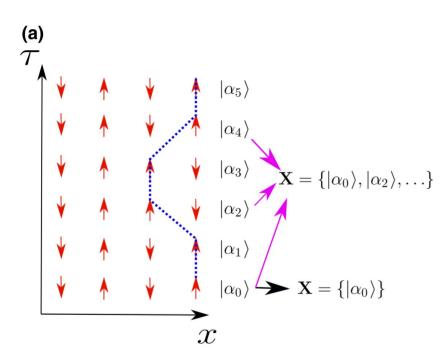
$$Z = \sum_{\alpha} \left< \alpha \right| e^{-\beta \hat{H}} \left| \alpha \right>$$

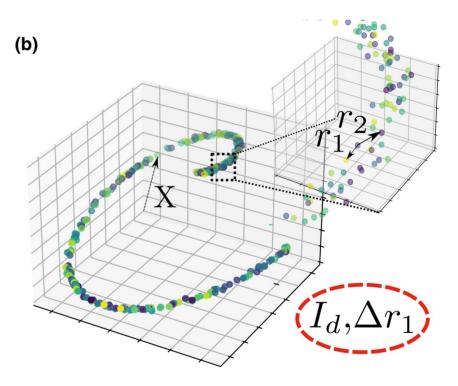
Quantum-to-classical mapping \rightarrow path-integral and stochastic series expansion



$$Z = \sum_{\alpha_0} \sum_{\alpha_1} \cdots \sum_{\alpha_{L-1}} \langle \alpha_0 | e^{-\Delta_{\tau} H} | \alpha_{L-1} \rangle \cdots \langle \alpha_2 | e^{-\Delta_{\tau} H} | \alpha_1 \rangle \langle \alpha_1 | e^{-\Delta_{\tau} H} | \alpha_0 \rangle$$

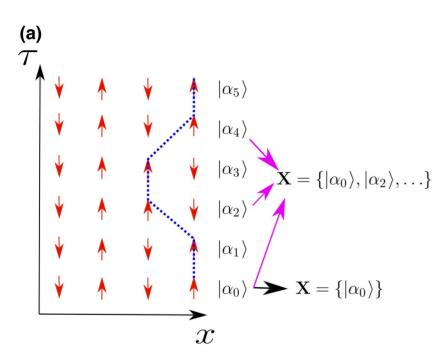
Quantum data sets and generic features of data sets





0	0	0	1	0	1	1	0
0	1	1	1	0	1	0	0 1 1
0	1	0	0	1	0	0	1
0	0	0	0	1	0	1	1

Quantum data sets and generic features of data sets

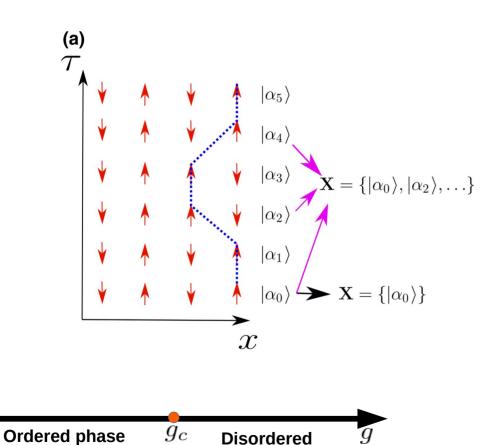


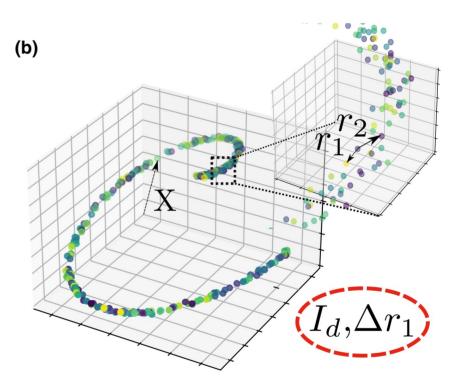
(b) N Quantities related to nn

Data sets with a **single** slice or **multiple** slices

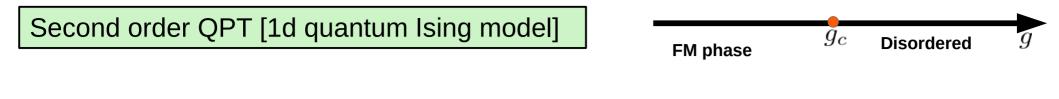
distances

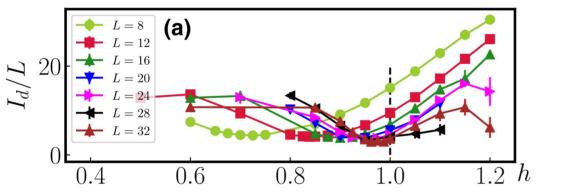
Quantum data sets and generic features of data sets





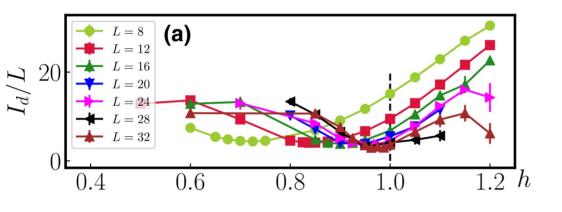
Second order transitions (1) Quantum Ising chain (2) 2d dimerized Heisenberg models BKT transitions (3) XXZ chain



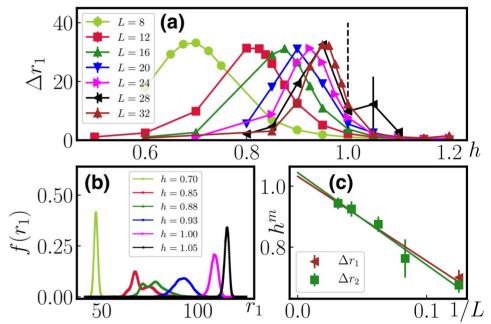


Id exhibits **a minimum** in the vicinity of h_c

Second order QPT [1d quantum Ising model]

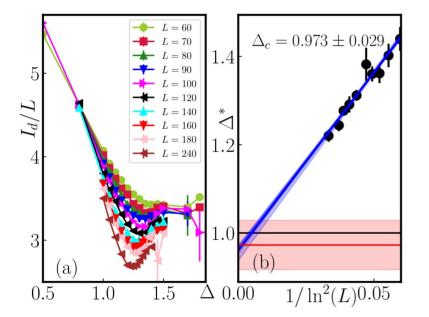


Id exhibits **a minimum** in the vicinity of \mathbf{h}_{c}



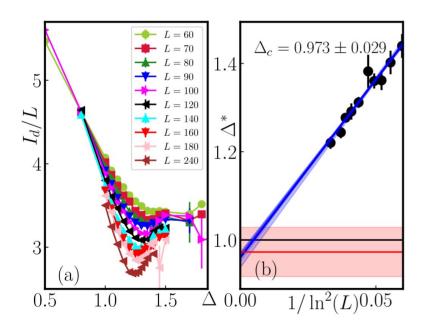
Statistics of first nn distances also reveal quantum criticality

BKT transition [1d XXZ model]

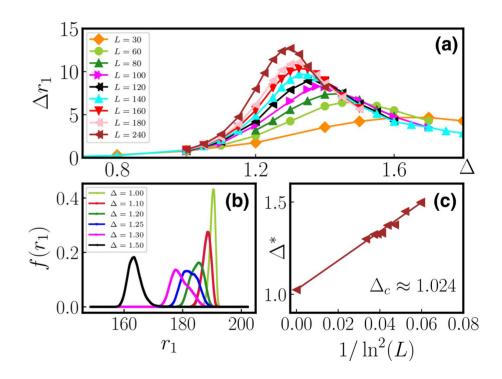


Id exhibits **a minimum** in the vicinity of Δ_c

BKT transition [1d XXZ model]



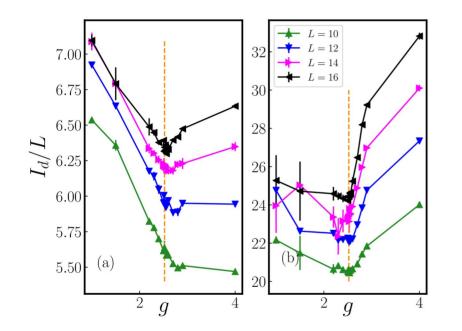
Id exhibits **a minimum** in the vicinity of Δ_{c}



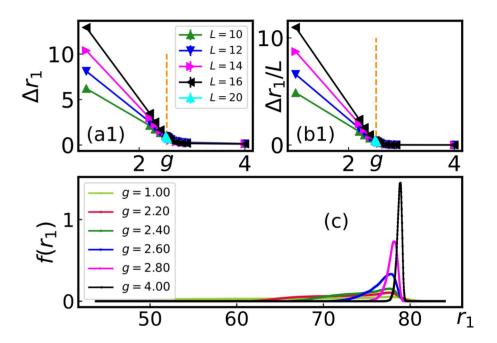
Statistics of first nn distances also reveal quantum criticality

2d QPT [dimerized Heisenberg model]

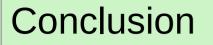
SU(2) AFM g_{c} AFM



Id exhibits **a minimum** in the vicinity of g_c



Extensive behavior of Δr_1 in the SU(2) AFM phase



Generic features of raw quantum data sets [e.g., Id and Δr_1] exhibit scaling behavior in the vicinity of quantum critical points \rightarrow Unsupervised learning quantum phase transitions

Thank you!

Marcello Dalmonte (ICTP/SISSA)

Xhek Turkeshi (ICTP/SISSA)

Alex Rodriguez (ICTP)

Adriano Angelone (LPTMC,Sorbonne Université)

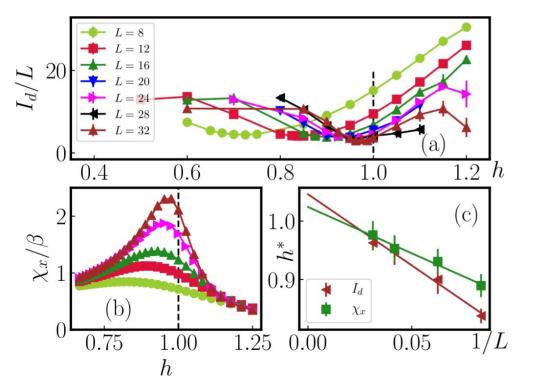
Rosario Fazio (ICTP)

PRX 11, 011040 (2021)

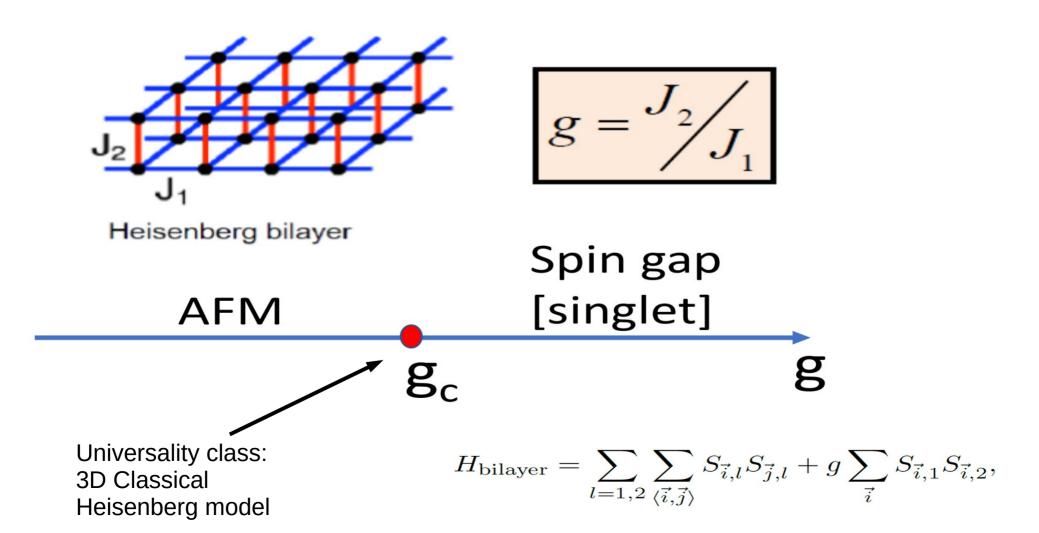
PRX Quantum 2, 030332 (2021)

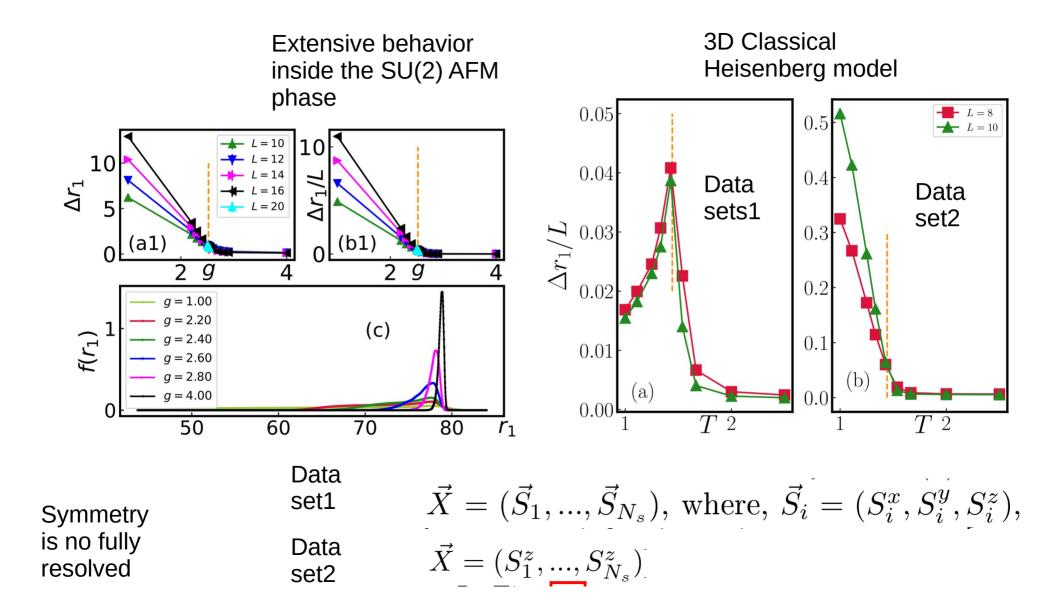
Supplemental Material

Second order QPT [1d quantum Ising model]



Two-dimensional quantum critical point





Why the ID exhibit universal scaling behavior?

Distances are related with many-body correlation functions

$$r(\vec{\theta^i}, \vec{\theta^j}) = \sqrt{2\sum_{k=1}^{N_s} \left(1 - \vec{S}_k^i \vec{S}_k^j\right)}.$$

$$I_d \sim -\frac{1}{\ln(r_2^*/r_1^*)}$$

Detect and characterize phase transitions?

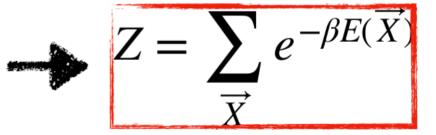
Which physical quantity to measure? Topological transitions, thermal-MBL transitions, ...

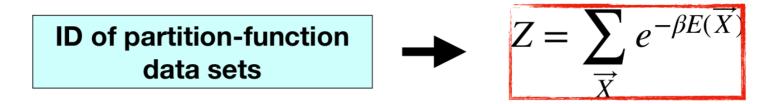
Machine learning \rightarrow raw physical data sets

Our unsupervised approach ...

Does not rely on dimension reduction

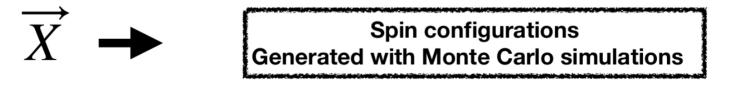
Intrinsic dimension (ID) of partition-function data sets



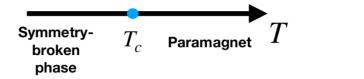


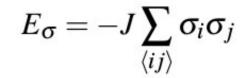
Data sets emerging in the vicinity of phase transitions

- Second-order PT
- First-order PT
- Berezinskii-Kosterlitz-Thouless (BKT) [topological PT]

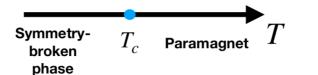


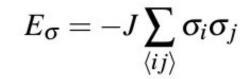
Technical details Number of configurations [Nr = 50000] Distance [Hamming (Ising and Potts) and Euclidean (XY)]

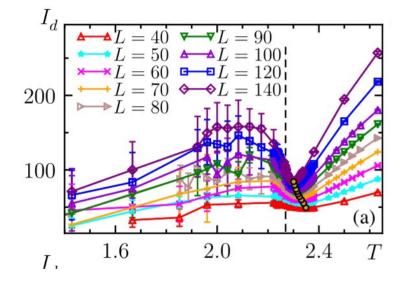




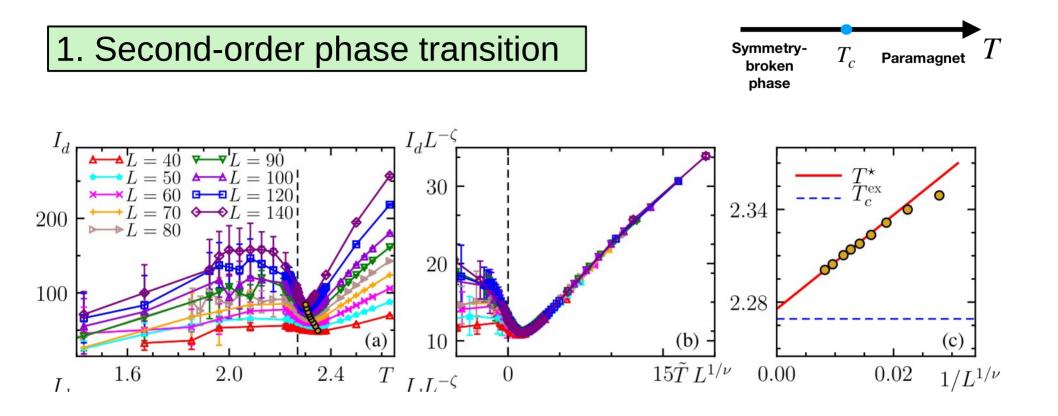
 $\xi \sim (T - T_c)^{-\nu}$







Id exhibit a local minimum at T*



Finite size scaling

 $\xi \sim (T - T_c)^{-\nu}$

 $T_c = 2.283(2), \ \nu = 1.02(2),$

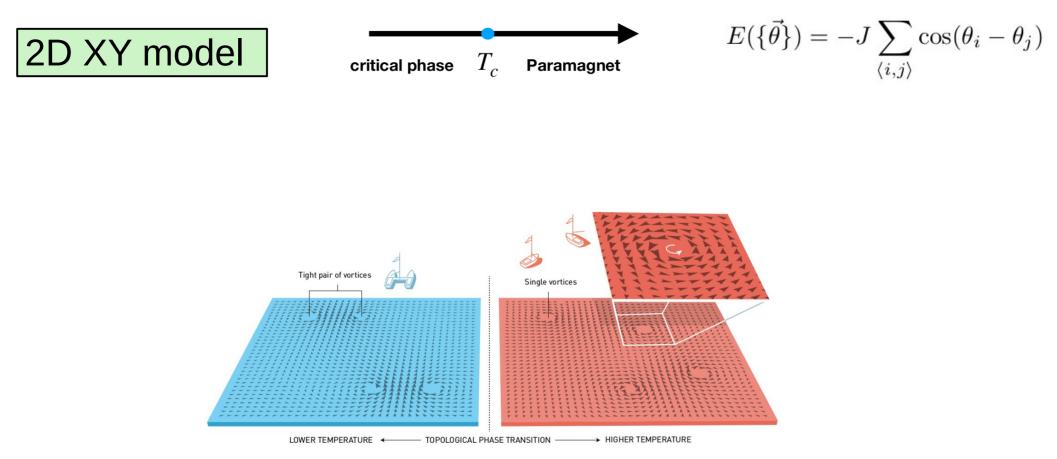
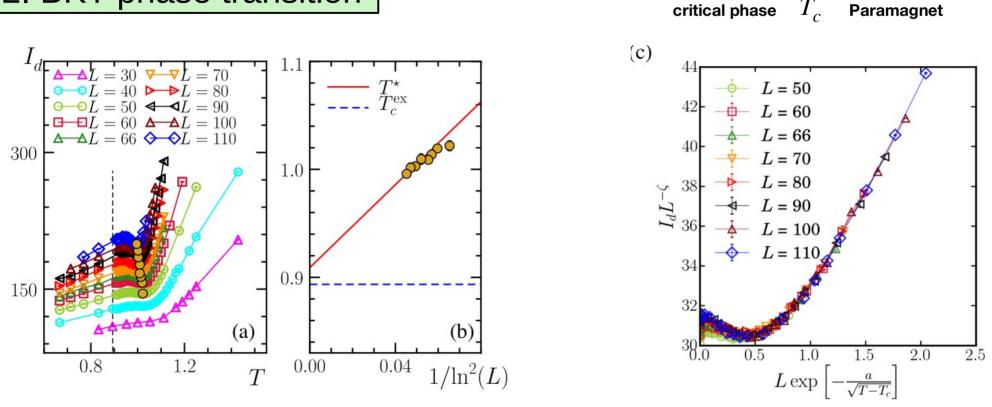


Illustration: ©Johan Jarnestad/The Royal Swedish Academy of Sciences

2. BKT phase transition

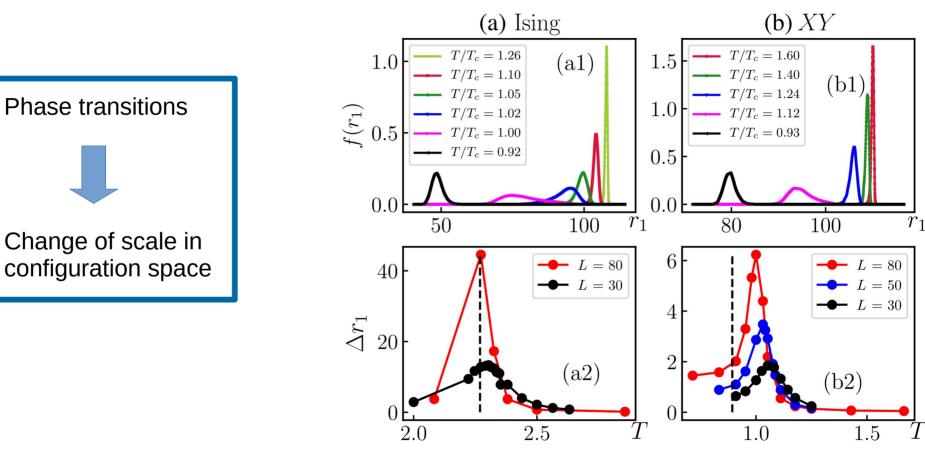


Id exhibit a local minimum at T*

Finite size scaling

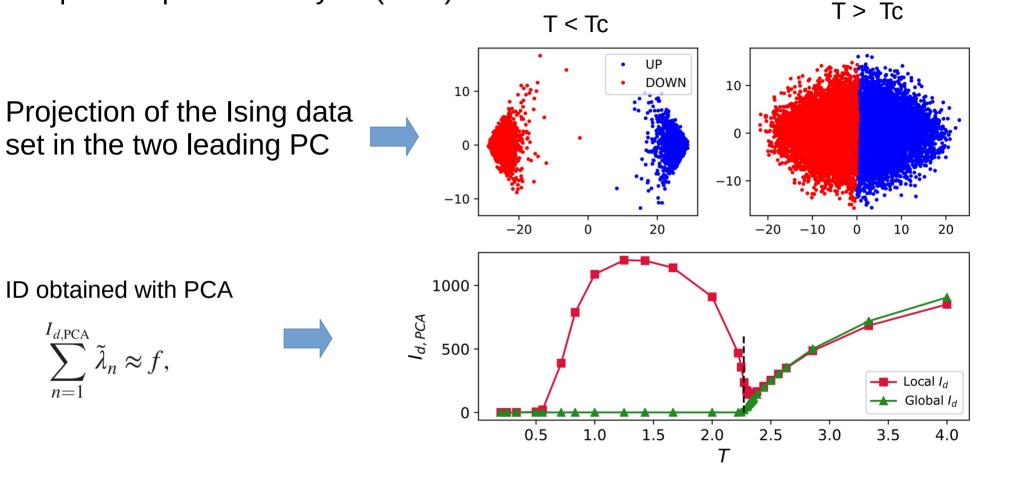
$$\xi \sim \exp\left(\frac{a}{\sqrt{T - T_c}}\right)$$

Statistics of first nearest-neighbor distances



Structural transition in Configuration space

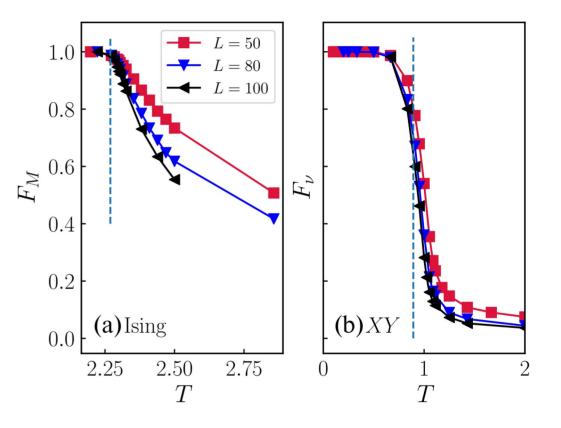
Principal component analysis (PCA)



Connectivity between neighboring points in configuration space

 $Fm \rightarrow fraction of points in the data set whose first two neighbors have same magnetization sign$

Fnu \rightarrow fraction of points in the data set whose first two neighbors have same winding number



3. First-order phase transition

