

Machine-Learning Universal Bosonic Functionals

Carlos L. Benavides-Riveros

Max Planck Institute for the Physics of Complex Systems

Dresden, Germany

Joint work with:

Jonathan Schmidt (Halle, Germany) & Matteo fadel (ETH, zürich, Switzerland).

Ground-state problem

Science (1995)

$$H |\Psi_0\rangle = E_0 |\Psi_0\rangle$$
$$E_0 = \min_{\Psi \in \mathcal{H}} \langle \Psi | H | \Psi \rangle$$

 $= \min_{\Psi \in \mathcal{H}} \langle$

1-particle term comprising local potentials.

fixed 2-body Hamiltonian: Coulomb repulsion, on site interaction...

$$\Psi(x_1, \dots, x_N)$$

Exponential scaling of the Hilbert space!

AMLD Lausanne, Mar 2022

One-body Reduced Density Matrix

$$\gamma_{ij} = \langle \Psi | b_i^{\dagger} b_j | \Psi \rangle$$

.It is a **positive semidefinite matrix**.

It is a crucial variable for the accurate description of Bose-Einstein
 condensates (<u>BEC</u>) and strongly correlated bosonic systems.

$$\gamma = \sum_{i} n_{i} |\rho_{i}\rangle \langle \varphi_{i} |$$
 .
BEC: $n_{1} \approx O(N)$

The information contained in the 1RDM can also be sufficient to
investigate multipartite quantum correlations in those systems and
even many-body localization.

S. Bera et al. PRL 115, 046603 (2015).

Universal functionals

Who is the tallest child?

$$E_{0} = \min_{\Psi \in \mathcal{H}} \langle \Psi | H | \Psi \rangle$$

= $\min_{\gamma} \min_{\Psi \to \gamma} \langle \Psi | h + W | \Psi \rangle$
= $\min_{\gamma} (\operatorname{Tr}[h\gamma] + \mathcal{F}_{W}[\gamma])$

$$\mathcal{F}_{\mathbf{W}}[\gamma] = \min_{\Psi \in \mathcal{H} \to \gamma} \langle \Psi | \mathbf{W} | \Psi \rangle$$

Parr and Yang, famous book on DFT, 1989.

Bose-Hubbard dimer

The Bose-Hubbard dimer describes N bosons in an optical lattice of 2 sites.

The Hamiltonian reads:

 $H = -t(b_L^{\dagger}b_R + b_R^{\dagger}b_L) + \sum_i v_i n_i + U\sum_i n_i(n_i - 1)$ BEC states $\gamma = \left[\begin{array}{c} \gamma_{LL} \\ \gamma_{LR} \\ \gamma_{LR} \end{array} \right]$ Depletion $|\mathcal{P}_p|$ $\gamma \ge 0$, $\operatorname{Tr}[\gamma] = 1$ $-\frac{1}{2}$ R $\left| L \right\rangle$ γ_{LL}

AMLD Lausanne, Mar 2022

CLBR, J. Wolff, M. A. L. Marques, and C. Schilling, Phys Rev Lett 124, 180603 (2020).

AMLD Lausanne, Mar 2022

Machine-Learning Universal Functionals

Is it really possible to use this theory for ground states?

This is a Schmidt decomposition of 1 + (N-1) bosons!

AMLD Lausanne, Mar 2022

Trivialization map

$$\begin{split} c &= U\Sigma V & \text{Singular value decomposition!} \\ \gamma &= cc^{+} = U\Sigma\Sigma^{+}U^{+} \\ \mathcal{F}[\gamma] &= \min_{V \in SO(M)} \sum_{\alpha\beta} \sqrt{n_{\alpha}n_{\beta}}\Delta_{\alpha\beta}(U_{\gamma}, V) & ---- \end{split}$$

Trivialization map:

$$\phi: \mathbb{R}^M \to SO(M)$$

$$\mathcal{F}[\gamma] = \min_{y \in \mathbb{R}^{M}} \sum_{\alpha\beta} \sqrt{n_{\alpha} n_{\beta} \Delta_{\alpha\beta}} (U_{\gamma}, \phi(y))$$

M. Lezcano-Casado, "Trivializations for gradient-based optimization on manifolds," in Advances in Neural Information Processing Systems, NeurIPS (2019).

J. Siegel, "Accelerated Optimization with Orthogonality Constraints", J. Comp. Math. 39 207 (2021).

AMLD Lausanne, Mar 2022

Bose-Hubbard dimer

We trained a fully connected neural network to output the matrix V using the

J. Schmidt, M. Fadel, and CLBR, Phys Rev Research (Letter) 3, L032063 (2021).

AMLD Lausanne, Mar 2022

ML Bosonic Functionals

PyTorch

Bose-Hubbard Hamiltonian (N = 40, M = 40) dim = 5 × 10²²

J. Schmidt, M. Fadel, and CLBR, Phys Rev Research (Letter) 3, L032063 (2021).

AMLD Lausanne, Mar 2022

Take-home messages

Based on a decomposition of γ , we have developed a method to design

 $\operatorname{FCNN}_{N,M,\theta}(\eta,\eta^2,\operatorname{US})\to\operatorname{V}\to\mathcal{F}_{N,M,\theta}[\gamma]$

Many thanks!

AMLD Lausanne, Mar 2022

"Bose Einstein force" I

At the border of the 1-RDM domain, the derivative of the universal funct

$$\nabla_{\gamma} \mathcal{F}[\gamma] \propto \frac{1}{\sqrt{N - N_{\text{BEC}}}}$$

This is a **repulsive** "force" in the sense that it prevents the system to ful

It is universal: it does not depend on the form of the external potentials. As a con

AMLD Lausanne, Mar 2022