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Mercury’s large core
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Origin of the Moon
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Origin of the Moon
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Martian hemispheric dichotomy
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Jupiter’s fuzzy core
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Uranus’ tilted axis “Something big crashed 
into Uranus and changed 
it forever.”

“We’re finally figuring 
out how Uranus ended 
up its side.”

“Uranus was slammed by 
an object twice the size 
of Earth.”
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Uranus’ tilted axis
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Ice giant dichotomy
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Origin of Pluto-Charon
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Planet Formation



Planet Formation

Source: Timpe et al. (in review)

Pow!



Why machine learning?

• Collisions are important for planet formation
• Simulations are expensive, parameter space is high dimensional
• Analytic and semi-analytic approaches aren’t getting the job done
• Needs to generalize to any quantifiable property
• Must be usable “on-the-fly” (i.e., in N-body simulations)
• Should provide us with physical insights
• Would be nice if models obey physics



Data | Collision Dataset

• 10,700 simulations of collisions 
• Smoothed-particle hydrodynamics 

run on Piz Daint supercomputer
• Latin hypercube sample (LHS) with 

adaptive response surface method 
• LHS10K, LHS500, LHS200
• Available on Dryad repository: 

https://doi.org/10.5061/dryad.j6q573n94
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Data | Latin Hypercube Sampling
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Data | Simulations

Source: Timpe et al. (in review)
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Type equation here.

𝛿𝐿𝑅

Data | Post-Impact Analysis

𝜔SLR



Data | Post-Impact Convergence

Source: Timpe et al. (in review)



Methods | Collision models

• Perfectly inelastic merger (PIM)
• Impact-erosion model (IEM)
• Fragmentation model (EDACM)
• Polynomial chaos expansion (PCE)
• Gaussian processes (GP)
• Multi-layer perceptrons (MLP)
• XGBoost (XGB)

Analytic & semi-analytic

Data-driven (ML and UQ)



Methods | Training Pipeline

• One emulator per post-impact property (single-target regression) 
• GP, MLP, PCE, and XGB
• Train on LHS10K
• Hyperparameter optimization with hyperopt / UQLab
• 80/20 train/test split
• 5-fold cross-validation

• Validate on LHS500
• Sensitivity analysis (Sobol’ index)



Results | Predictions
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Results | Sensitivity Analysis
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Results | Dataset Requirements
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Results | Dataset Requirements
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Work to be done…

• Training Data
• Expand the collision parameter space
• Higher-resolution simulations
• New equations of state

• Models
• Physical self-consistency
• Multi-target regression for conserved quantities
• Advanced techniques (e.g., ensemble methods)
• Implement into N-body integrators



Thanks!

• Pre-print on arXiv from tomorrow!
• Simulations available on Dryad: 

https://doi.org/10.5061/dryad.j6q573n94
• Co-authors:
• Maria Han Veiga (UZH)
• Mischa Knabenhans (UZH)
• Joachim Stadel (UZH)
• Stefano Marelli (ETH Zurich)

https://doi.org/10.5061/dryad.j6q573n94

