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Topological crossover in Ising gauge theory

Hamiltonian H (o) = —JZ H ;i
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Topological crossover in Ising gauge theory

P el

- Hamiltonian H (o) = —JZ Hai

excited state

ground state

- - = - -
- = = == = =
- - - - - -
e e e R R
- - - - - -
- = - -—— - -
- - = = - -
- ) = = - - =
- - - - -
- = = = - - -
- - - — - -
—- = = == - =
- - - - -

- - — = - -
- = == =) = =
- = == =) =
- = == = = =

- - - - - -
- - - - - - -
- - - - - -
- - - - - -
- = = = = =
e A e e s 3

[]o:i=+1

1€P

HO’izl

1€P

temperature T'




Motivation

- detecting phase transitions from experimentally accessible data
= does not require prior theoretical knowledge

= could enable discovery of new phases of matter




Motivation

- detecting phase transitions from experimentally accessible data
= does not require prior theoretical knowledge

= could enable discovery of new phases of matter

use (deep) neural networks which proved successful
in traditional image classification tasks
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Detecting phase transitions using neural networks

« supervised learning (SL)
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Machine learning phases of matter

Juan Carrasquilla’™ and Roger G. Melko"?

« learning by confusion (LBC)
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Learning phase transitions by confusion

Evert P. L. van Nieuwenburg*, Ye-Hua Liu and Sebastian D. Huber

- prediction-based method (PBM)
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Detecting phase transitions using neural networks

2) train neural network to
minimize loss function £
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What’s the problem?

- methods were motivated in a heuristic fashion

- (deep) neural networks are difficult to interpret

= have limited understanding of their working principle
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Greplova et al., New J. Phys. 22 045003 (2020)




What’s the problem?

- methods were motivated in a heuristic fashion

- (deep) neural networks are difficult to interpret

= have limited understanding of their working principle

high expressivity

0

low interpretability and high computational cost




Replacing neural networks

2) train neural network to
minimize loss function £
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2*) evaluate analytical expression
of optimal predictions 3°* ()
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Optimal analytical predictors

P
- supervised learning gt (z) = Zf(el v(@)
D k1 Pr()
Pr(x
- learning by confusion yﬁf]’;c( ) = Zf(el k()
k=1 Pr(z)
~opt 25:1 Py, (x) px

- prediction-based method jpgy () =

Zi{:l Py, ()
= gauge changes in underlying probability distributions {P;}# ,

analytical expressions reveal dependence of output on input data




Optimal analytical predictors

P
supervised learning ot (z) = Zﬁ:{el k()
Zk:1 Pk(iB)
P
learning by confusion yﬁ%tc( ) = Zf(el k()
k=1 Pr(z)
jopy >t P (2) P

prediction-based method jppy () =

Zi{:l Py, ()
= gauge changes in underlying probability distributions {P;}# ,

analytical expressions reveal dependence of output on input data

= use analytical expressions for probability distributions or estimate it
based on drawn samples

can compute optimal indicators I°P* directly from data




Optimal analytical predictors

- require less computational resources compared to training neural networks
= single training epoch > evaluation time of optimal indicators
= N0 need to tune hyperparameters

= convergence is explicitly guaranteed

train neural networks evaluate optimal predictors
gradient descent

global minimum

Li et al., Adv. Neural Inf. Process. Syst. 31 (2018)



Bypassing the trade-off

high expressivity
)

low interpretability and high computational cost

neural networks
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high expressivity
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Example: Ising gauge theory

probability distribution

ground state excited state
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Example: Ising gauge theory

probability distribution supervised learning
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- for Boltzmann distribution: 95" (pr) o< P(Eys)

= supervised learning tracks the relevant physical quantity




Example: Ising gauge theory

training neural networks
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= learning by confusion fails in this setting

Greplova et al., New J. Phys. 22 045003 (2020)

evaluating optimal predictors




Example: Ising gauge theory

probability distribution . prediction-based method
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- for Boltzmann distribution: 4%, < 9pos

= prediction-based method is equivalent to density-of-states (DOS) model

Greplova et al., New J. Phys. 22 045003 (2020)



...and many more

- classical many-body systems

= symmetry-breaking phase transition in Ising model

= Berezinskii-Kosterlitz-Thouless transition in XY model

- quantum many-body systems

= first-order phase transition in XXZ chain

= topological phase transition in Kitaev chain
=- Mott-insulator to superfluid transition in Bose-Hubbard model

= many-body localization transition in Bose-Hubbard model
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Thank you
for your attention.

Code:

https://github.com/arnoldjulian/Replacing-neural-networks-by-optimal-
analytical-predictors-for-the-detection-of-phase-transitions
Paper:

J. Arnold and F. Schafer, Replacing neural networks by optimal analytical
predictors for the detection of phase transitions, arXiv:2203.06084 (2022).



