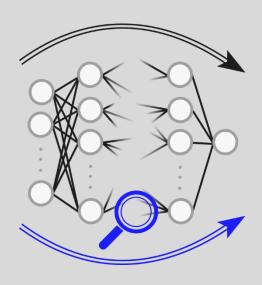
Replacing neural networks by optimal analytical predictors for the detection of phase transitions

<u>Julian Arnold</u> and Frank Schäfer Department of Physics, University of Basel Bruder group



arXiv:2203.06084

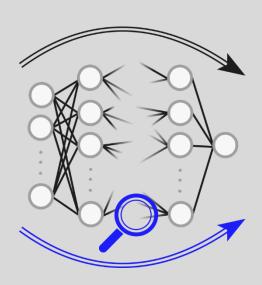
2

3

Replacing neural networks by optimal analytical predictors for the detection of phase transitions

1

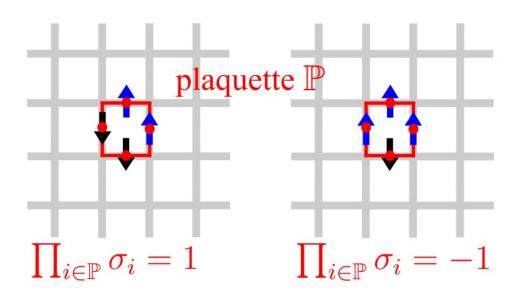
<u>Julian Arnold</u> and Frank Schäfer Department of Physics, University of Basel Bruder group



arXiv:2203.06084

Topological crossover in Ising gauge theory

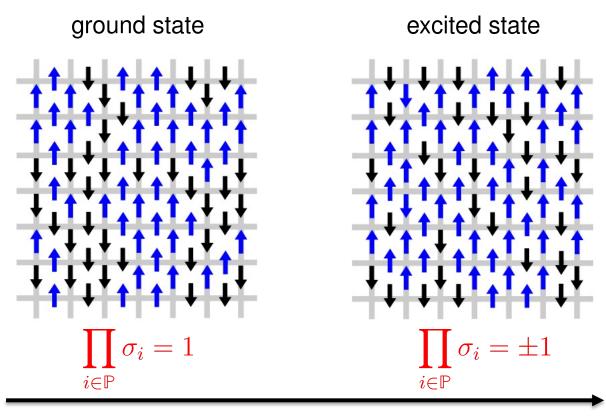
- Hamiltonian $H({m \sigma}) = -J \sum_{\mathbb{P}} \prod_{i \in \mathbb{P}} \sigma_i$



- spin configuration $m{\sigma}=(\sigma_1,\sigma_2,\ldots,\sigma_{L\times L})$ with $\sigma_i\in\{+1,-1\}$
- Boltzmann distribution $\mathrm{P}({m \sigma}) = \frac{e^{-H({m \sigma})/k_{\mathrm{B}}T}}{Z}$

Topological crossover in Ising gauge theory

- Hamiltonian
$$H({m \sigma}) = -J \sum_{\mathbb{P}} \prod_{i \in \mathbb{P}} \sigma_i$$



temperature T

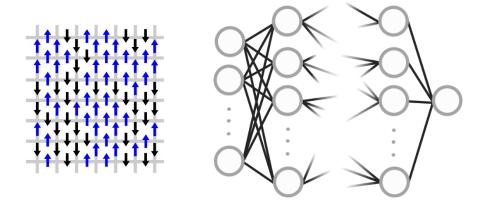
Motivation

- detecting phase transitions from experimentally accessible data
 - ⇒ does not require prior theoretical knowledge
 - ⇒ could enable discovery of new phases of matter

Motivation

- detecting phase transitions from experimentally accessible data
 - ⇒ does not require prior theoretical knowledge
 - \Rightarrow could enable discovery of new phases of matter

use (deep) neural networks which proved successful in traditional image classification tasks



Detecting phase transitions using neural networks

supervised learning (SL)

Machine learning phases of matter

Juan Carrasquilla1* and Roger G. Melko1,2

learning by confusion (LBC)

Learning phase transitions by confusion

Evert P. L. van Nieuwenburg*, Ye-Hua Liu and Sebastian D. Huber

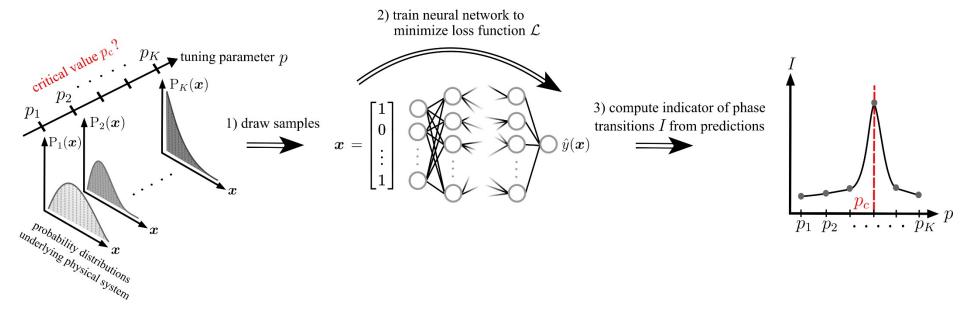
prediction-based method (PBM)

PHYSICAL REVIEW E 99, 062107 (2019)

Vector field divergence of predictive model output as indication of phase transitions

Frank Schäfer and Niels Lörch* Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

Detecting phase transitions using neural networks

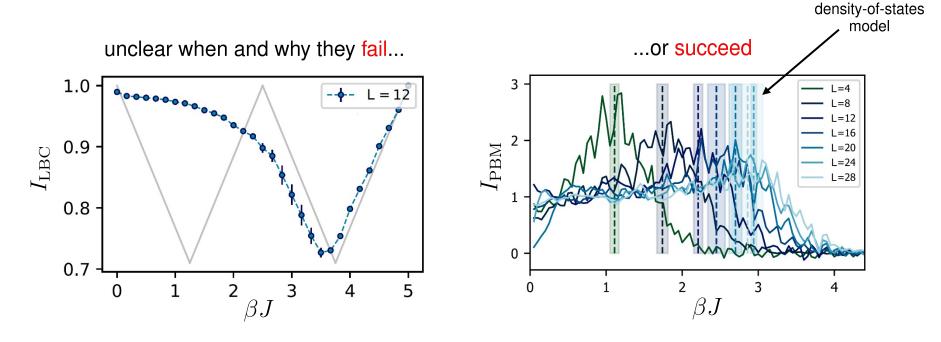


What's the problem?

- methods were motivated in a heuristic fashion
- (deep) neural networks are difficult to interpret
 - ⇒ have limited understanding of their working principle

What's the problem?

- methods were motivated in a heuristic fashion
- (deep) neural networks are difficult to interpret
 - ⇒ have limited understanding of their working principle



Greplova et al., New J. Phys. **22** 045003 (2020)

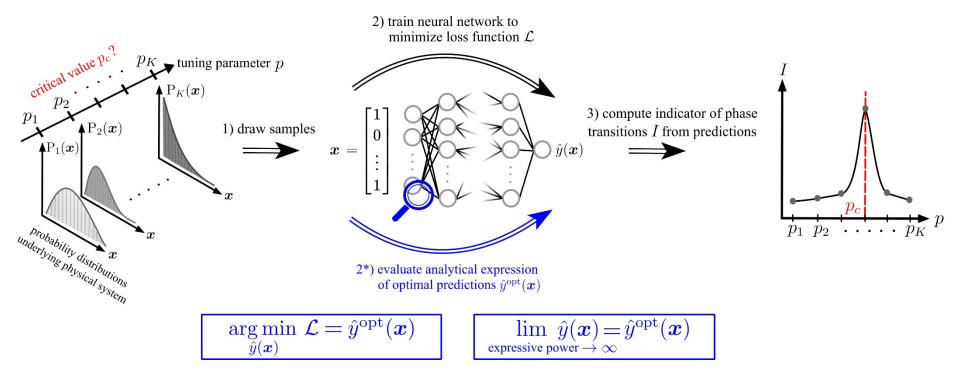
What's the problem?

- methods were motivated in a heuristic fashion
- (deep) neural networks are difficult to interpret
 - ⇒ have limited understanding of their working principle

high expressivity

low interpretability and high computational cost

Replacing neural networks



Optimal analytical predictors

- supervised learning
$$\hat{y}_{\mathrm{SL}}^{\mathrm{opt}}(m{x}) = rac{\sum_{k \in \mathrm{I}} \mathrm{P}_k(m{x})}{\sum_{k=1}^K \mathrm{P}_k(m{x})}$$

- learning by confusion
$$\hat{y}_{ ext{LBC}}^{ ext{opt}}(m{x}) = rac{\sum_{k \in ext{I}} ext{P}_k(m{x})}{\sum_{k=1}^K ext{P}_k(m{x})}$$

- prediction-based method
$$\hat{y}_{\mathrm{PBM}}^{\mathrm{opt}}\left(oldsymbol{x}
ight) = rac{\sum_{k=1}^{K}\mathrm{P}_{k}\left(oldsymbol{x}
ight)p_{k}}{\sum_{k=1}^{K}\mathrm{P}_{k}\left(oldsymbol{x}
ight)}$$

 \Rightarrow gauge changes in underlying probability distributions $\{P_k\}_{k=1}^K$

analytical expressions reveal dependence of output on input data

Optimal analytical predictors

- supervised learning
$$\hat{y}_{\mathrm{SL}}^{\mathrm{opt}}(m{x}) = rac{\sum_{k \in \mathrm{I}} \mathrm{P}_k(m{x})}{\sum_{k=1}^K \mathrm{P}_k(m{x})}$$

- learning by confusion
$$\hat{y}_{ ext{LBC}}^{ ext{opt}}(m{x}) = rac{\sum_{k \in ext{I}} ext{P}_k(m{x})}{\sum_{k=1}^K ext{P}_k(m{x})}$$

- prediction-based method
$$\hat{y}_{\mathrm{PBM}}^{\mathrm{opt}}\left(oldsymbol{x}
ight) = rac{\sum_{k=1}^{K}\mathrm{P}_{k}\left(oldsymbol{x}
ight)p_{k}}{\sum_{k=1}^{K}\mathrm{P}_{k}\left(oldsymbol{x}
ight)}$$

 \Rightarrow gauge changes in underlying probability distributions $\{P_k\}_{k=1}^K$

analytical expressions reveal dependence of output on input data

⇒ use analytical expressions for probability distributions or estimate it based on drawn samples

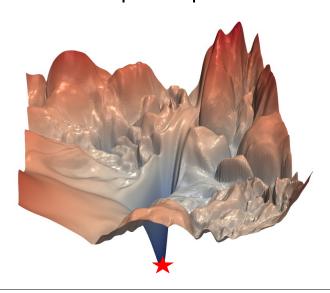
can compute optimal indicators I^{opt} directly from data

Optimal analytical predictors

- require less computational resources compared to training neural networks
 - \Rightarrow single training epoch \gtrsim evaluation time of optimal indicators
 - ⇒ no need to tune hyperparameters
 - ⇒ convergence is explicitly guaranteed

train neural networks gradient descent global minimum

evaluate optimal predictors

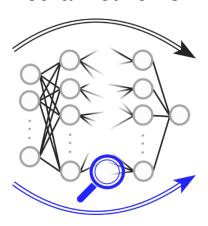


Bypassing the trade-off

high expressivity

low interpretability and high computational cost

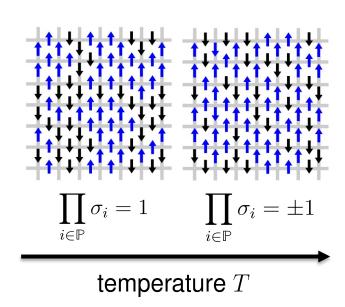
neural networks

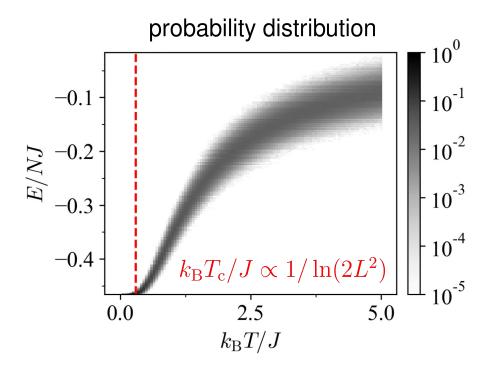


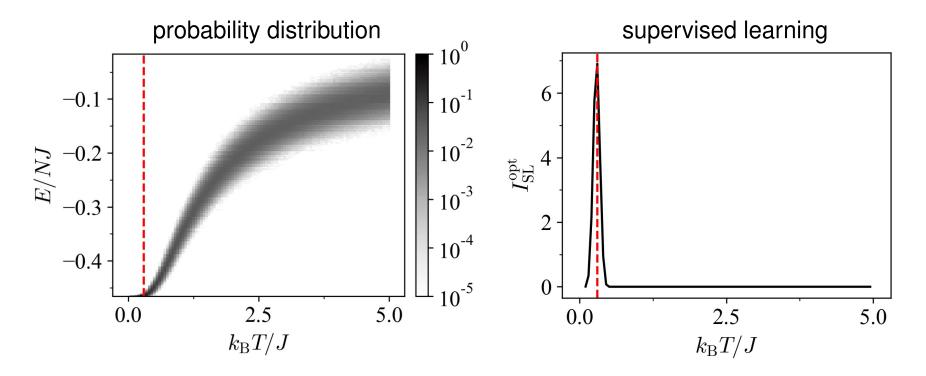
optimal analytical predictors

high expressivity
with
high interpretability at low computational cost

ground state excited state





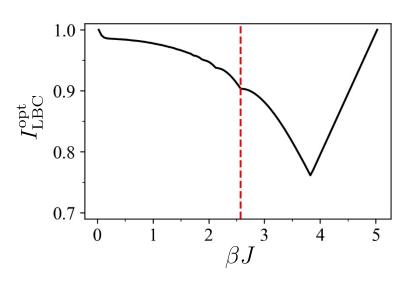


- for Boltzmann distribution: $\hat{y}_{\mathrm{SL}}^{\mathrm{opt}}(p_k) \propto \mathrm{P}_k(E_{\mathrm{gs}})$
 - ⇒ supervised learning tracks the relevant physical quantity

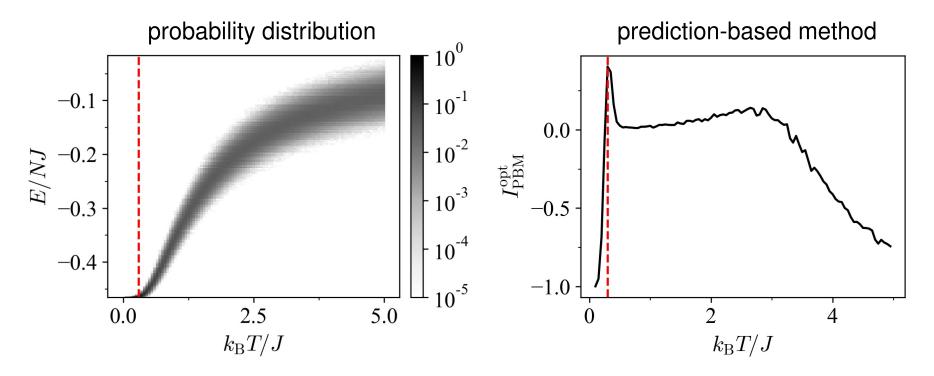
training neural networks

$\begin{array}{c} 1.0 \\ 0.9 \\ 0.7 \\ \hline 0.7 \\ \hline \end{array}$

evaluating optimal predictors



 \Rightarrow learning by confusion fails in this setting



- for Boltzmann distribution: $\hat{y}_{PBM}^{opt} \Leftrightarrow \hat{y}_{DOS}$
 - ⇒ prediction-based method is equivalent to density-of-states (DOS) model

...and many more

- classical many-body systems
 - ⇒ symmetry-breaking phase transition in Ising model
 - ⇒ Berezinskii-Kosterlitz-Thouless transition in XY model
- quantum many-body systems
 - ⇒ first-order phase transition in XXZ chain
 - ⇒ topological phase transition in Kitaev chain
 - ⇒ Mott-insulator to superfluid transition in Bose-Hubbard model
 - ⇒ many-body localization transition in Bose-Hubbard model

Code:

https://github.com/arnoldjulian/Replacing-neural-networks-by-optimal-analytical-predictors-for-the-detection-of-phase-transitions

Paper:

J. Arnold and F. Schäfer, Replacing neural networks by optimal analytical predictors for the detection of phase transitions, arXiv:2203.06084 (2022).