Quantifying of geometric measure of entanglement of quantum Generative Adversarial Network states on a quantum computer

Khrystyna Gnatenko

SoftServe Inc., 2d Sadova St., 79021 Lviv, Ukraine Ivan Franko National University of Lviv, Professor Ivan Vakarchuk Department for Theoretical Physics, 12 Drahomanov St., Lviv, 79005, Ukraine

Outline

- Relation of the geometric measure of entanglement with mean spin.
- Geometric measure of entanglement of quantum Generative Adversarial Network states.
- Detection of the entanglement on IBM's quantum computer.
- Conclusions.

Geometric measure of entanglement and its relation with mean spin

Geometric measure of entanglement is defined as minimal squared Fubiny-Study distance between an entangled state $|\psi\rangle$ and a set of non-entangled states $\left|\psi_{s}\right\rangle$

$$
\begin{equation*}
E(|\psi\rangle)=\min _{\left|\psi_{s}\right\rangle}\left(1-\left|\left\langle\psi \mid \psi_{s}\right\rangle\right|^{2}\right) \tag{1}
\end{equation*}
$$

[A. Shimony, Ann. N.Y. Acad. Sci. 755, 675 (1995)]. The geometric measure of entanglement of a spin with quantum system in a state

$$
\begin{equation*}
|\psi\rangle=a|\uparrow\rangle\left|\Phi_{1}\right\rangle+b|\downarrow\rangle\left|\Phi_{2}\right\rangle, \quad\left\langle\Phi_{i} \mid \Phi_{i}\right\rangle=1, \tag{2}
\end{equation*}
$$

(a, b are constants, $\left|\Phi_{1}\right\rangle,\left|\Phi_{2}\right\rangle$ are states of a quantum system) is related with the mean value of spin as

$$
\begin{equation*}
E(|\psi\rangle)=\frac{1}{2}(1-|\langle\boldsymbol{\sigma}\rangle|), \quad\langle | \boldsymbol{\sigma}| \rangle=\sqrt{\langle\boldsymbol{\sigma}\rangle} . \tag{3}
\end{equation*}
$$

Result (3) was obtained in [A. M. Frydryszak, M. I. Samar, V. M. Tkachuk, Eur. Phys. J. D 71, 233 (2017)].

Geometric measure of entanglement of quantum Generative Adversarial Network states

The variational n-qubit form corresponding to quantum generator. The layer is formed by the rotational gates $R Y\left(\theta_{i, j}\right)$ and two-qubit $C Z$ gates, k is the depth [Ch. Zoufal, A. Lucchi, S. Woerner, npj Quantum Information 5, 103 (2019)].

Quantum state generated by the rotational gates and the entangling blocks

$$
\begin{equation*}
|G\rangle=\prod_{(a, b) \in E} C Z_{a b} \prod_{i} R Y_{i}\left(\theta_{i, 0}\right)|0\rangle^{\otimes n} \tag{4}
\end{equation*}
$$

can be associated with the undirected graph $G(E, V)$ with the structure of ring. The geometric measure of entanglement of a qubit with other qubits in graph state (4) is related with the graph properties. The entanglement of qubit $q[l]$ with other qubits is related with the degree of vertex n_{l} representing it. In the case of $\theta_{i, 0}=\theta$, it reads

$$
\begin{equation*}
E_{l}=\frac{1}{2}-\frac{1}{2} \sqrt{\sin ^{2} \theta\left(\cos ^{2} \theta\right)^{n_{l}}+\cos ^{2} \theta} . \tag{5}
\end{equation*}
$$

[Kh. P. Gnatenko, N. A. Susulovska, EPL 136, 40003 (2021), Kh. P. Gnatenko, V. M. Tkachuk, Phys. Lett. A. 396, 127248 (2021).]

Detection of the entanglement on IBM's quantum

 computerQuantum protocol for detection of the geometric measure of entanglement of qubit $q[1]$ with other qubits in a state generated by quantum generator with depth $k=1$

In the protocol we take into account that

$$
\begin{array}{r}
\left\langle\sigma^{x}\right\rangle=\langle\psi| \sigma^{x}|\psi\rangle=\left\langle\tilde{\psi}^{y}\right| \sigma^{z}\left|\tilde{\psi}^{y}\right\rangle=\left|\left\langle\tilde{\psi}^{y} \mid 0\right\rangle\right|^{2}-\left|\left\langle\tilde{\psi}^{y} \mid 1\right\rangle\right|^{2}, \\
\left|\tilde{\psi}^{y}\right\rangle=\exp \left(\mathrm{i} \pi \sigma^{y} / 4\right)|\psi\rangle, \\
\left\langle\sigma^{y}\right\rangle=\langle\psi| \sigma^{y}|\psi\rangle=\left\langle\tilde{\psi}^{x}\right| \sigma^{z}\left|\tilde{\psi}^{x}\right\rangle=\left|\left\langle\tilde{\psi}^{x} \mid 0\right\rangle\right|^{2}-\left|\left\langle\tilde{\psi}^{x} \mid 1\right\rangle\right|^{2}, \\
\left|\tilde{\psi}^{x}\right\rangle=\exp \left(-\mathrm{i} \pi \sigma^{x} / 4\right)|\psi\rangle . \tag{9}
\end{array}
$$

Therefore to quantify the mean value $\left\langle\sigma^{x}\right\rangle$ the

$$
R_{\alpha}=R Y(-\pi / 2)
$$

gate has to be applied to the state of a qubit before measurement. To detect the mean value $\left\langle\sigma^{y}\right\rangle$ the

$$
R_{\alpha}=R X(\pi / 2)
$$

gate has to be used.

Results of calculations of the entanglement, $k=1$

Results of calculations of the entanglement of qubit $q[1]$ with other qubits in a state generated by quantum generator with depth $k=1$

$$
\begin{array}{r}
E_{1}\left(\theta_{0,0}, \theta_{1,0}, \theta_{2,0}\right)=\frac{1}{2}\left(1-\left|\left\langle\boldsymbol{\sigma}_{1}\right\rangle\right|\right)= \\
=\frac{1}{2}\left(1-\sqrt{\cos ^{2} \theta_{0,0} \cos ^{2} \theta_{2,0} \sin ^{2} \theta_{1,0}+\cos ^{2} \theta_{1,0}}\right) . \tag{10}
\end{array}
$$

In the case when $\theta_{i, 0}=\theta$ the entanglement reads

$$
\begin{equation*}
E_{1}(\theta, \theta, \theta)=\frac{1}{2}\left(1-\sqrt{\cos ^{4} \theta \sin ^{2} \theta+\cos ^{2} \theta}\right) \tag{11}
\end{equation*}
$$

Results of quantum calculations of the geometric measure of entanglement of qubit $q[1]$ with other qubits in a state generated by quantum generator with depth $k=1$ for different values of $\theta_{i, 0}=\theta$ on ibmq-manila (marked by black crosses) (a), ibmq-qasm-simulator (red crosses) (b), and analytical results (line)

Quantum protocol for detection of the geometric measure of entanglement of qubit $q[1]$ with other qubits in a state generated by quantum generator with depth $k=2$

Results of calculations of the entanglement, $k=2$

Results of calculations of the entanglement of qubit $q[1]$ with other qubits in a state generated by quantum generator with depth $k=2$ in the case of $\theta_{i, 0}=\pi / 2$

$$
\begin{array}{r}
E\left(\theta_{0,1}, \theta_{1,1}, \theta_{2,1}\right)=\frac{1}{2}\left(1-\left|\left\langle\boldsymbol{\sigma}_{1}\right\rangle\right|\right)= \\
=\frac{1}{2}\left(\left.1-\frac{1}{4} \right\rvert\, \cos \left(\theta_{0,1}+\theta_{1,1}-\theta_{2,1}\right)+\cos \left(\theta_{0,1}-\theta_{1,1}+\theta_{2,1}\right)+\right. \\
\left.+\cos \left(-\theta_{0,1}+\theta_{1,1}+\theta_{2,1}\right)+\cos \left(\theta_{0,1}+\theta_{1,1}+\theta_{2,1}\right) \mid\right) . \tag{12}
\end{array}
$$

For $\theta_{i, 1}=\theta_{1}$ the expression is reduced as

$$
\begin{equation*}
E\left(\theta_{1}, \theta_{1}, \theta_{1}\right)=\frac{1}{2}\left(1-\left|\cos ^{3} \theta_{1}\right|\right) . \tag{13}
\end{equation*}
$$

Results of calculations of entanglement of qubit $q[1]$ with other qubits in a state generated by quantum generator with depth $k=2$ for different values of $\theta_{i, 1}=\theta_{1}$ and $\theta_{i, 0}=\pi / 2$ obtained on ibmq-manila (black crosses) (c), ibmq-qasm-simulator (red crosses) (d), and analytical results (line)

Results of calculations of entanglement of qubit $q[1]$ with other qubits in a state generated by quantum generator with depth $k=2$ for different values of $\theta_{i, 0}=\theta_{0}$ and $\theta_{i, 1}=\pi / 2$ obtained on ibmq-manila (black crosses) (a), ibmq-qasm-simulator (red crosses) (b), and analytical results (line)

$$
E\left(\theta_{0}, \theta_{0}, \theta_{0}\right)=\frac{1}{2}-\frac{1}{4}\left|\sin \left(2 \theta_{0}\right)\right|
$$

Conclusions

- Geometric measure of entanglement of a qubit with other qubits in a states of quantum Generative Adversarial Network has been examined.
- The entanglement in a quantum graph state prepared by the quantum generator with depth $\mathrm{k}=1$ is related to the degree of the vertex corresponding to the qubit in the graph.
- The entanglement of qubit $q[i]$ with other qubits in the states prepared by the quantum generator is determined by the parameters $\theta_{i, a}, \theta_{j, a}$ of $R Y$ gates in the variational form that act on the qubits entangled with $q[i]$ by $C Z_{i j}$ gates (index a corresponds to the depth).
- Entanglement of states generated by quantum generator has been quantified on IBM's quantum computer ibmq-manila.

Thank you for your attention!

сЛАВА УKPAÏHi!

