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Betti numbers
Counting d-dimensional holes

β0 = 1, β1 = 1
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Betti numbers
Counting d-dimensional holes
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The shape of a graph

A simple graph
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The shape of a graph

Connected components
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The shape of a graph

Some cycles
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The shape of a graph

Some 2-cliques
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The shape of a graph

A 3-clique
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Comparing two graphs

Clearly, the graphs are very similar (they are of course not isomorphic), but if we

blindly calculate Betti numbers, we will judge them to be different.
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Persistent homology
Calculating multi-scale Betti numbers

ε = 0.00: 16 connected components

ε = 0.25: 11 connected componentsε = 0.50: 1 connected component, 12 cyclesε = 0.75: 1 connected component, 19 cyclesε = 1.00: 1 connected component, 57 cycles
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Persistence diagram
Multi-scale topological descriptor
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There is a one-to-one correspondence between topological features in a persistence

diagram and vertices/edges of the graph.
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Classifying weighted, unlabelled graphs

1 Calculate set of persistence diagrams for each graph

2 Calculate kernel or distance between corresponding persistence diagrams

3 Train classifier on kernel matrix

Step 2 needs to be fast, so we need vectorisation methods!
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Simple feature vector representation
Persistence images
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Abstract

Many data sets can be viewed as a noisy sampling of an underlying space, and tools from
topological data analysis can characterize this structure for the purpose of knowledge dis-
covery. One such tool is persistent homology, which provides a multiscale description of
the homological features within a data set. A useful representation of this homological
information is a persistence diagram (PD). Efforts have been made to map PDs into spaces
with additional structure valuable to machine learning tasks. We convert a PD to a finite-
dimensional vector representation which we call a persistence image (PI), and prove the
stability of this transformation with respect to small perturbations in the inputs. The

c©2017 Adams, et al.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v18/16-337.html.

• Two-dimensional binning of a persistence

diagram (grid)

• Perform Gaussian smoothing over all grid cells

• Obtain a feature vector of a fixed size

Source: H. Adams et al., ‘Persistence images: A stable vector representation of persistent homology’
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Example
Persistence image transformation
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Calculatingmean descriptors
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How to use this for graph classification

Learning metrics for persistence-based summaries and applications
for graph classification

Qi Zhao∗

zhao.2017@osu.edu
Yusu Wang ∗

yusu@cse.ohio-state.edu

Abstract

Recently a new feature representation framework based on a topological tool called persistent homol-
ogy (and its persistence diagram summary) has gained much momentum. A series of methods have been
developed to map a persistence diagram to a vector representation so as to facilitate the downstream use
of machine learning tools. In these approaches, the importance (weight) of different persistence features
are usually pre-set. However often in practice, the choice of the weight-function should depend on the
nature of the specific data at hand. It is thus highly desirable to learn a best weight-function (and thus
metric for persistence diagrams) from labelled data. We study this problem and develop a new weighted
kernel, called WKPI, for persistence summaries, as well as an optimization framework to learn the weight
(and thus kernel). We apply the learned kernel to the challenging task of graph classification, and show
that our WKPI-based classification framework obtains similar or (sometimes significantly) better results
than the best results from a range of previous graph classification frameworks on benchmark datasets.

1 Introduction

In recent years a new data analysis methodology based on a topological tool called persistent homology has
started to attract momentum. The persistent homology is one of the most important developments in the field
of topological data analysis, and there have been fundamental developments both on the theoretical front (e.g,
[24, 11, 14, 9, 15, 6]), and on algorithms / implementations (e.g, [46, 5, 16, 21, 30, 4]). On the high level,
given a domain X with a function f : X → R on it, the persistent homology summarizes “features” of X
across multiple scales simultaneously in a single summary called the persistence diagram (see the second
picture in Figure 1). A persistence diagram consists of a multiset of points in the plane, where each point
p = (b, d) intuitively corresponds to the birth-time (b) and death-time (d) of some (topological) features of X
w.r.t. f . Hence it provides a concise representation of X , capturing multi-scale features of it simultaneously.
Furthermore, the persistent homology framework can be applied to complex data (e.g, 3D shapes, or graphs),
and different summaries could be constructed by putting different descriptor functions on input data.

Due to these reasons, a new persistence-based feature vectorization and data analysis framework (Figure
1) has become popular. Specifically, given a collection of objects, say a set of graphs modeling chemical
compounds, one can first convert each shape to a persistence-based representation. The input data can now be
viewed as a set of points in a persistence-based feature space. Equipping this space with appropriate distance
or kernel, one can then perform downstream data analysis tasks (e.g, clustering).

The original distances for persistence diagram summaries unfortunately do not lend themselves easily
to machine learning tasks. Hence in the last few years, starting from the persistence landscape [8], there
have been a series of methods developed to map a persistence diagram to a vector representation to facilitate
∗Computer Science and Engineering Department, The Ohio State University, Columbus, OH 43221, USA.
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9 • Obtain persistence images from graph filtration

• Learn a weight function on the persistence image

• Calculate weighted distance between images

• Use this as a kernel in an SVM

Source: Q. Zhao and Y. Wang, ‘Learning metrics for persistence-based summaries and applications for

graph classification’
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Classifying labelled graphs
Weisfeiler–Lehman iteration & subtree feature vector
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Classifying labelled graphs
Weisfeiler–Lehman iteration & subtree feature vector

A

B

D E
F

C

G Label

Count 3 1 2 1

Φ(G) := (3, 1, 2, 1)

Compare G and G ′ by evaluating a kernel between Φ(G) and
Φ(G ′) (linear, RBF, …).
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Improving theWeisfeiler–Lehman procedure

A Persistent Weisfeiler–Lehman Procedure for Graph Classification

Bastian Rieck * 1 Christian Bock * 1 Karsten Borgwardt 1

Abstract
The Weisfeiler–Lehman graph kernel exhibits
competitive performance in many graph classifi-
cation tasks. However, its subtree features are
not able to capture connected components and
cycles, topological features known for character-
ising graphs. To extract such features, we lever-
age propagated node label information and trans-
form unweighted graphs into metric ones. This
permits us to augment the subtree features with
topological information obtained using persistent
homology, a concept from topological data anal-
ysis. Our method, which we formalise as a gener-
alisation of Weisfeiler–Lehman subtree features,
exhibits favourable classification accuracy and
its improvements in predictive performance are
mainly driven by including cycle information.

1. Introduction
Graph-structured data sets are ubiquitous in a variety of
different application domains, each of them posing a sep-
arate challenge while also requiring different tasks to be
solved. A common task involves graph classification, for
which a variety of methods exists. These methods comprise
convolutional neural networks (Duvenaud et al. 2015), re-
current neural networks (Lei et al. 2017), or Hilbert space
methods (Vishwanathan et al. 2010), the latter also being
referred to as graph kernels. While several approaches for
defining graph kernels exist, the most common one uses the
R-convolution framework (Haussler 1999), which makes
it possible to define the similarity between two graphs as a
function of the similarity of their substructures.

Substructures that have been used for graph classifica-
tion range from graphlets (Shervashidze et al. 2009), i.e.
small non-isomorphic graphs of fixed size, over shortest

*Equal contribution 1Department of Biosystems Science and
Engineering, ETH Zurich, 4058 Basel, Switzerland. Correspon-
dence to: Bastian Rieck <bastian.rieck@bsse.ethz.ch>, Karsten
Borgwardt <karsten.borgwardt@bsse.ethz.ch>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

paths (Borgwardt & Kriegel 2005), to random walks (Gärt-
ner et al. 2003, Kashima et al. 2003, Sugiyama & Borg-
wardt 2015). One of the most powerful substructures is the
set of subtree patterns (Ramon & Gärtner 2003), i.e. pat-
terns based on rooted subgraphs of a graph. Their compu-
tational complexity made their applicability somewhat lim-
ited, until the Weisfeiler–Lehman (WL) graph kernel frame-
work (Shervashidze & Borgwardt 2009, Shervashidze et al.
2011) was developed. Properly trained, it still constitutes
the state-of-the-art method for many graph classification
tasks. The framework is based on the idea of iteratively
propagating (node) label information through a graph, lead-
ing to a feature vector representation that can be used to
assess the dissimilarity of two graphs.

One of the disadvantages of this framework is that its re-
labelling step, i.e. the step in which subtree patterns are
being compressed, is somewhat “brittle”: labels are only
compared with a Dirac kernel, making their dissimilarity a
coarse function. Moreover, the subtree feature vector only
contains counts of compressed labels and can neither ac-
count for their relevance with respect to the topology of the
graph nor capture connected components and cycles, both
of which are important and interpretable features for char-
acterising graphs (Rieck et al. 2018, Sizemore et al. 2017).
We thus propose an enhancement of the original WL stabil-
isation procedure that uses recent advances in topological
data analysis (Munch 2017) to alleviate these issues. Our
contributions are as follows:

- We measure the relevance of topological features (con-
nected components and cycles) in graphs and use them
to define a novel set of WL subtree features, which we
show to be a generalised version of the original ones.

- We develop a topology-based kernel that uses an iterative
variant of the WL stabilisation procedure to classify non-
attributed graphs.

- We demonstrate that our proposed features perform
favourably on a range of graph classification benchmark
data sets. In particular, we empirically show that the
inclusion of cycle information yields classification accu-
racy improvements over state-of-the-art methods.

• The Weisfeiler–Lehman iteration vectorises labels

in graphs

• Persistent homology assess the relevance of

topological features

• We can combine both of them!

• This requires a distance between multisets

Source: B. Rieck et al., ‘A persistent Weisfeiler–Lehman procedure for graph classification’
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A distance between label multisets

Let A = {la1
1 , la2

2 , . . . } and B = {lb1
1 , lb2

2 , . . . } be two multisets that are defined over

the same label alphabet Σ = {l1, l2, . . . }.

Transform the sets into count vectors, i.e. x := [a1, a2, . . . ] and y := [b1, b2, . . . ].

Calculate theirmultiset distance as

dist(x, y) :=

(
∑

i
|ai − bi|p

) 1
p

,

i.e. the p Minkowski distance, for p ∈ R. Since nodes and their multisets are in

one-to-one correspondence, we now have a metric on the graph!
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Multiset distance
Example for p = 1

A

B

D E
F

C

G

dist(C, E) = dist
(
{ 3, 1}, { 2, 1}

)
= dist([3, 1], [2, 1])
= 1

dist(C, A) = dist
(
{ 3, 1}, { 1}

)
= dist([3, 1], [1, 0])
= 3
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Vertex distance

Use vertex label from previousWeisfeiler–Lehman iteration, i.e. l(h−1)
vi , as well as l(h)vi ,

the one from the current iteration:

dist(vi, vj) :=
[
l(h−1)
vi 6= l(h−1)

vj

]
+ dist

(
l(h)vi , l(h)vj

)
+ τ

τ ∈ R>0 is required to make this into a proper metric. This turns any labelled graph

into a weighted graph whose persistent homology we can calculate!
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Vertex distance
Example

h = 0
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Vertex distance
Example

h = 0 h = 1
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Vertex distance
Example

h = 0 h = 1 h = 2
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Vertex distance
Example

h = 0 h = 1 h = 2 h = 3
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Persistence-basedWeisfeiler–Lehman feature vectors

Connected components

Φ(h)
P-WL

:=
[
p(h)(l0), p(h)(l1), . . .

]
p(h)(li) := ∑

l(v)=li

pers(v)p,

Cycles

Φ(h)
P-WL-C

:=
[
z(h)(l0), z(h)(l1), . . .

]
z(h)(li) := ∑

li∈l(u,v)
pers(u, v)p,
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Persistence-basedWeisfeiler–Lehman feature vectors

Connected components

Φ(h)
P-WL

:=
[
p(h)(l0), p(h)(l1), . . .

]
p(h)(li) := ∑

l(v)=li

pers(v)p,

Cycles

Φ(h)
P-WL-C

:=
[
z(h)(l0), z(h)(l1), . . .

]
z(h)(li) := ∑

li∈l(u,v)
pers(u, v)p,

Bonus

We can re-define the vertex distance to obtain the original Weisfeiler–Lehman

subtree features (plus information about cycles):

dist(vi, vj) :=

{
1 if vi 6= vj

0 otherwise
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Results

D & D MUTAG NCI1 NCI109 PROTEINS PTC-MR PTC-FR PTC-MM PTC-FM

V-Hist 78.32± 0.35 85.96± 0.27 64.40± 0.07 63.25± 0.12 72.33± 0.32 58.31± 0.27 68.13± 0.23 66.96± 0.51 57.91± 0.83

E-Hist 72.90± 0.48 85.69± 0.46 63.66± 0.11 63.27± 0.07 72.14± 0.39 55.82± 0.00 65.53± 0.00 61.61± 0.00 59.03± 0.00

RetGK∗ 81.60± 0.30 90.30± 1.10 84.50± 0.20 75.80± 0.60 62.15± 1.60 67.80± 1.10 67.90± 1.40 63.90± 1.30

WL 79.45± 0.38 87.26± 1.42 85.58± 0.15 84.85± 0.19 76.11± 0.64 63.12± 1.44 67.64± 0.74 67.28± 0.97 64.80± 0.85

Deep-WL∗ 82.94± 2.68 80.31± 0.46 80.32± 0.33 75.68± 0.54 60.08± 2.55

P-WL 79.34± 0.46 86.10± 1.37 85.34± 0.14 84.78± 0.15 75.31± 0.73 63.07± 1.68 67.30± 1.50 68.40± 1.17 64.47± 1.84

P-WL-C 78.66± 0.32 90.51± 1.34 85.46± 0.16 84.96± 0.34 75.27± 0.38 64.02± 0.82 67.15± 1.09 68.57± 1.76 65.78± 1.22

P-WL-UC 78.50± 0.41 85.17± 0.29 85.62± 0.27 85.11± 0.30 75.86± 0.78 63.46± 1.58 67.02± 1.29 68.01± 1.04 65.44± 1.18

Try it out

• Favourable performance

• Can make use of cycles

• Code is open-source
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A neural network approach

Deep Learning with Topological Signatures

Christoph Hofer
Department of Computer Science
University of Salzburg, Austria
chofer@cosy.sbg.ac.at

Roland Kwitt
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University of Salzburg, Austria
Roland.Kwitt@sbg.ac.at
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UNC Chapel Hill, NC, USA
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Andreas Uhl
Department of Computer Science
University of Salzburg, Austria

uhl@cosy.sbg.ac.at

Abstract

Inferring topological and geometrical information from data can offer an alternative
perspective on machine learning problems. Methods from topological data analysis,
e.g., persistent homology, enable us to obtain such information, typically in the form
of summary representations of topological features. However, such topological
signatures often come with an unusual structure (e.g., multisets of intervals) that is
highly impractical for most machine learning techniques. While many strategies
have been proposed to map these topological signatures into machine learning
compatible representations, they suffer from being agnostic to the target learning
task. In contrast, we propose a technique that enables us to input topological
signatures to deep neural networks and learn a task-optimal representation during
training. Our approach is realized as a novel input layer with favorable theoretical
properties. Classification experiments on 2D object shapes and social network
graphs demonstrate the versatility of the approach and, in case of the latter, we
even outperform the state-of-the-art by a large margin.

1 Introduction

Methods from algebraic topology have only recently emerged in the machine learning community,
most prominently under the term topological data analysis (TDA) [7]. Since TDA enables us to
infer relevant topological and geometrical information from data, it can offer a novel and potentially
beneficial perspective on various machine learning problems. Two compelling benefits of TDA
are (1) its versatility, i.e., we are not restricted to any particular kind of data (such as images,
sensor measurements, time-series, graphs, etc.) and (2) its robustness to noise. Several works have
demonstrated that TDA can be beneficial in a diverse set of problems, such as studying the manifold
of natural image patches [8], analyzing activity patterns of the visual cortex [28], classification of 3D
surface meshes [27, 22], clustering [11], or recognition of 2D object shapes [29].

Currently, the most widely-used tool from TDA is persistent homology [15, 14]. Essentially1,
persistent homology allows us to track topological changes as we analyze data at multiple “scales”.
As the scale changes, topological features (such as connected components, holes, etc.) appear and
disappear. Persistent homology associates a lifespan to these features in the form of a birth and
a death time. The collection of (birth, death) tuples forms a multiset that can be visualized as a
persistence diagram or a barcode, also referred to as a topological signature of the data. However,
leveraging these signatures for learning purposes poses considerable challenges, mostly due to their

1We will make these concepts more concrete in Sec. 2.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

• Obtain persistence diagrams from graph filtration

• Define layer to project persistence diagrams to 1D

• Learn parameters for multiple projections

• Stack projected diagrams and use as features

Source: C. Hofer et al., ‘Deep learning with topological signatures’
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Open questions
Learning appropriate filtrations

Graph Filtration Learning

Christoph Hofer
Department of Computer Science
University of Salzburg, Austria
chofer@cosy.sbg.ac.at

Roland Kwitt
Department of Computer Science
University of Salzburg, Austria
Roland.Kwitt@sbg.ac.at

Marc Niethammer
UNC Chapel Hill, NC, USA

mn@cs.unc.edu

Abstract

We propose an approach to learning with graph-structured data in the problem
domain of graph classification. In particular, we present a novel type of readout
operation to aggregate node features into a graph-level representation. To this
end, we leverage persistent homology computed via a real-valued, learnable, filter
function. We establish the theoretical foundation for differentiating through the
persistent homology computation. Empirically, we show that this type of readout
operation compares favorably to previous techniques, especially when the graph
connectivity structure is informative for the learning problem.

1 Introduction

We consider the problem of learning a function from the space of (finite) undirected graphs, G, to
a (discrete/continuous) target domain Y. Additionally, graphs might have discrete, or continuous
attributes attached to each node. Prominent examples for this class of learning problem appear in the
context of classifying molecule structures, chemical compounds or social networks.

A substantial amount of research has been devoted to developing techniques for supervised learning
with graph-structured data, ranging from kernel-based methods [23, 22, 9, 15], to more recent
approaches based on graph neural networks (GNN) [20, 11, 31, 18, 26, 28]. Most of the latter works
use an iterative message passing scheme [10] to learn node representations, followed by a graph-level
pooling operation that aggregates node-level features. This aggregation step is typically referred to as
a readout operation. While research has mostly focused on variants of the message passing function,
the readout step may have a significant impact, as it aims to capture properties of the entire graph.
Importantly, both simple and more refined readout operations, such as summation, differentiable
pooling [28], or sort pooling [30], are inherently coupled to the amount of information carried over
via multiple rounds of message passing. Hence, architectural GNN choices are typically guided by
dataset characteristics, e.g., requiring to tune the number of message passing rounds to the expected
size of graphs.

Contribution. We propose a homological readout operation that captures the full global structure of
a graph while relying only on node representations that are learned (end-to-end), from immediate
neighbors. This not only alleviates the aforementioned design challenge, but potentially also offers
additional discriminative information.

The main idea is to consider a graph, G, as a simplicial complex, K, i.e., the main structure in
simplicial homology. While this view would allow us to study, e.g., the ranks of homology groups,
revealing the number of connected components or loops, the information is quite coarse. Alternatively,
we can construct K, one part at a time, and keep track of the induced homological changes. To do
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• Learn initial node representation on a graph

• Calculate corresponding persistence diagram

• Apply differentiable coordinate function

• Adjust learned representation and repeat

Source: C. Hofer et al., ‘Graph filtration learning’
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Summary

Three ways for TDA-based graph classification

1 Filtration plus feature vectors

2 Filtration plus ‘hybrid’ feature vectors

3 Filtration plus differentiable feature vectors

Join our Slack community ‘TDA in ML’ to discuss

papers, ideas, and collaborations!
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