Convolutional restricted Boltzmann machine aided Monte Carlo

Phys. Rev. B 102, 195148

Content

- Introduction to Markov Chain Monte Carlo (MCMC)
- Restricted Boltzmann machines (RBM) Problems
 - Convolutional RBM
- Examples:
 - Ising model
 - Honeycomb Kitaev model

Li Huang and Lei Wang Phys. Rev. B 95, 035105

Daniel Alcalde Puente and Ilya M. Eremin Phys. Rev. B 102, 195148

1 Hyb. 1007. D 102, 19914

• Summary

Content

- Introduction to Markov Chain Monte Carlo (MCMC)
- Restricted Boltzmann machines (RBM) Problems
 - Convolutional RBM
- Examples:
 - Ising model
 - Honeycomb Kitaev model

Li Huang and Lei Wang Phys. Rev. B 95, 035105

Daniel Alcalde Puente and Ilya M. Eremin

Phys. Rev. B 102, 195148

• Summary

$$\begin{array}{l} \textbf{Monte Carlo} \\ \bar{f} = \sum_{x \in X} f(x) P(x) = \langle f(x) \rangle_{x \in P(x)} \\ = \frac{1}{M} \sum_{i=1}^{M} f(x^{(i)}) \end{array} \begin{array}{l} \textbf{Example} \\ P(s) = \frac{e^{-\beta E(s)}}{Z} \\ E_{\text{Ising}}(s) = -\sum_{\langle i,j \rangle} s_i s_j \end{array}$$

- Objective:
- $^{\circ}$ Compute **expectation values** at different T
- How do we sample x from P(x)?
 Markov Chain x⁽⁰⁾ P(x⁽¹⁾|x⁽⁰⁾) x⁽¹⁾ ..., x⁽ⁿ⁻¹⁾ P(x⁽ⁿ⁾|x⁽ⁿ⁻¹⁾) x⁽ⁿ⁾
 Detailed Balance P_{phys}(x)P(x|x') = P(x'|x)P_{phys}(x')
- There are many P(x|x')
- $^{\rm o}$ Metropolis is a choice $P(x|x'){\rightarrow}{\rm universal},$ slow (local update)

RBM

CRBM

Examples

$$\begin{array}{l} \text{Monte Carlo} \\ \bar{f} = \sum_{x \in X} f(x) P(x) = \langle f(x) \rangle_{x \in P(x)} \\ = \frac{1}{M} \sum_{i=1}^{M} f(x^{(i)}) \end{array} \begin{array}{l} \text{Example} \\ P(s) = \frac{e^{-\beta E(s)}}{Z} \\ E_{\text{Ising}}(s) = -\sum_{\langle i,j \rangle} s_i s_j \end{array}$$

- Objective:
- $^{\circ}$ Compute **expectation values** at different T
- How do we sample x from P(x)?
 Markov Chain x⁽⁰⁾ P(x⁽¹⁾|x⁽⁰⁾) x⁽¹⁾ ..., x⁽ⁿ⁻¹⁾ P(x⁽ⁿ⁾|x⁽ⁿ⁻¹⁾) x⁽ⁿ⁾
 Detailed Balance P_{phys}(x)P(x|x') = P(x'|x)P_{phys}(x')
- There are many P(x|x')
- $^{\rm o}$ Metropolis is a choice $P(x|x'){\rightarrow}{\rm universal},$ slow (local update)

RBM

CRBM

Examples

$$\begin{array}{l} \text{Monte Carlo} \\ \bar{f} = \sum_{x \in X} f(x) P(x) = \langle f(x) \rangle_{x \in P(x)} \\ = \frac{1}{M} \sum_{i=1}^{M} f(x^{(i)}) \end{array} \begin{array}{l} \text{Example} \\ P(s) = \frac{e^{-\beta E(s)}}{Z} \\ E_{\text{Ising}}(s) = -\sum_{\langle i,j \rangle} s_i s_j \end{array}$$

- Objective:
- $^{\circ}$ Compute **expectation values** at different T

• How do we sample x from P(x)? • Markov Chain $x^{(0)} \xrightarrow{P(x^{(1)}|x^{(0)})} x^{(1)} \xrightarrow{\dots} x^{(n-1)} \xrightarrow{P(x^{(n)}|x^{(n-1)})} x^{(n)}$

- Detailed Balance $P_{\text{phys}}(x)P(x|x') = P(x'|x)P_{\text{phys}}(x')$
- There are many P(x|x')

• Metropolis is a choice $P(x|x') \rightarrow \text{universal}$, slow (local update)

Introduction

RBM

CRBM

Examples

$$\begin{array}{l} \text{Monte Carlo} \\ \bar{f} = \sum_{x \in X} f(x) P(x) = \langle f(x) \rangle_{x \in P(x)} \\ = \frac{1}{M} \sum_{i=1}^{M} f(x^{(i)}) \end{array} \begin{array}{l} \text{Example} \\ P(s) = \frac{e^{-\beta E(s)}}{Z} \\ E_{\text{Ising}}(s) = -\sum_{\langle i,j \rangle} s_i s_j \end{array}$$

- Objective:
- $^{\circ}$ Compute **expectation values** at different T
- How do we sample x from P(x) ?
 Markov Chain x⁽⁰⁾ P(x⁽¹⁾ | x⁽⁰⁾) x⁽¹⁾ ..., x⁽ⁿ⁻¹⁾ P(x⁽ⁿ⁾ | x⁽ⁿ⁻¹⁾) x⁽ⁿ⁾
 Detailed Balance P_{phys}(x)P(x|x') = P(x'|x)P_{phys}(x')
 There are many P(x|x')
- Metropolis is a choice $P(x|x') \rightarrow \text{universal}$, slow (local update)

RBM

CRBM

Examples

$$\begin{array}{l} \text{Monte Carlo} \\ \bar{f} = \sum_{x \in X} f(x) P(x) = \langle f(x) \rangle_{x \in P(x)} \\ = \frac{1}{M} \sum_{i=1}^{M} f(x^{(i)}) \end{array} \begin{array}{l} \text{Example} \\ P(s) = \frac{e^{-\beta E(s)}}{Z} \\ E_{\text{Ising}}(s) = -\sum_{\langle i,j \rangle} s_i s_j \end{array}$$

- Objective:
- $^{\circ}$ Compute **expectation values** at different T
- How do we sample x from P(x)?
- Markov Chain $x^{(0)} \xrightarrow{P(x^{(1)}|x^{(0)})} x^{(1)} \xrightarrow{\dots} x^{(n-1)} \xrightarrow{P(x^{(n)}|x^{(n-1)})} x^{(n)}$
- Detailed Balance $P_{\text{phys}}(x)P(x|x') = P(x'|x)P_{\text{phys}}(x')$
- There are many P(x|x')

RBM

CRBM

Examples

$$\begin{array}{l} \text{Monte Carlo} \\ \bar{f} = \sum_{x \in X} f(x) P(x) = \langle f(x) \rangle_{x \in P(x)} \\ = \frac{1}{M} \sum_{i=1}^{M} f(x^{(i)}) \end{array} \begin{array}{l} \text{Example} \\ P(s) = \frac{e^{-\beta E(s)}}{Z} \\ E_{\text{Ising}}(s) = -\sum_{\langle i,j \rangle} s_i s_j \end{array}$$

- Objective:
- $^{\circ}$ Compute **expectation values** at different T
- How do we **sample** x from P(x) ?
- Markov Chain $x^{(0)} \xrightarrow{P(x^{(1)}|x^{(0)})} x^{(1)} \xrightarrow{\dots} x^{(n-1)} \xrightarrow{P(x^{(n)}|x^{(n-1)})} x^{(n)}$
- Detailed Balance $P_{\text{phys}}(x)P(x|x') = P(x'|x)P_{\text{phys}}(x')$
- There are many P(x|x')
- Metropolis is a choice $P(x|x') \rightarrow \text{universal}$, slow (local update)

RBM

CRBM

Examples

RBM

CRBM

Examples

Summary

Restricted Boltzmann Machine

Introduction RBM CRBM Examples

Summary

 $P_{\text{RBM}}(x;W) \longrightarrow P_{\text{RBM}}(x|x;W)$ faster than Metropolis?

• Different matrix W different P(x)

• Objective:

• Find $W \to P_{RBM}(x; W) \simeq P_{phys}(x; T) \quad \forall x \text{ (training)}$

• Machine learning model \rightarrow Learn probability distributions

• Sample from $P_{\text{RBM}}(x|x;W)$

Introduction RBM CRBM Examples

Summary

 $^{\circ}$ Machine learning model \rightarrow Learn probability distributions

 $P_{\text{RBM}}(x;W) \longrightarrow P_{\text{RBM}}(x|x;W)$ faster than Metropolis?

• Different matrix W different P(x)

• Objective:

• Find $W \to P_{RBM}(x; W) \simeq P_{phys}(x; T) \quad \forall x \text{ (training)}$

• Sample from $P_{\text{RBM}}(x|x;W)$

Introduction RBM CRBM Examples

Summary

 $^{\circ}$ Machine learning model \rightarrow Learn probability distributions

 $P_{\text{RBM}}(x;W) \longrightarrow P_{\text{RBM}}(x|x;W)$ faster than Metropolis?

• Different matrix W different P(x)

• Objective:

• Find $W \to P_{RBM}(x; W) \simeq P_{phys}(x; T) \quad \forall x \text{ (training)}$

• Sample from $P_{\text{RBM}}(x|x;W)$

Hidden statistical variables h_i h is used for sampling

Introduction RBM CRBM Examples

$$P_{\text{RBM}}(x;W) = \sum_{\substack{h_i \in \{0,1\}}} \frac{e^{-E(x,h;W)}}{Z}$$
$$= \frac{e^{-F(x;W)}}{Z}$$

$$F(x;W) = -\sum_{i} \log\left(1 + e^{\sum_{j} W_{ij}x_{j}}\right)$$

Introduction RBM CRBM Examples Summary $^{\rm o}$ Machine learning model \rightarrow Learn probability distributions

```
P_{\text{RBM}}(x;W) \longrightarrow P_{\text{RBM}}(x|x;W)
Global Update (faster)
```


• Different matrix W different P(x)

• Objective:

• Find $W \to P_{RBM}(x; W) \simeq P_{phys}(x; T) \quad \forall x \text{ (training)}$ • Sample from $P_{RBM}(x|x; W)$

• How to train RBM? How to choose W? • Measure \rightarrow How close is P_{RBM} to P_{phys} ?

$$\Delta E(x^{(i)}; W) = E_{\text{phys}}(x^{(i)})\beta - F_{\text{RBM}}(x^{(i)}; W)$$
$$\log(W) = \frac{1}{M} \sum_{i=1}^{M} \Delta E(x^{(i)}; W)^2$$
$$e^{-F_{\text{RBM}}(x)}$$

• If
$$loss(W) = 0 \implies P_{RBM}(x) = \frac{e^{-r_{RBM}(x)}}{Z_R}$$
$$= \frac{e^{-\beta E(x)}}{Z}$$
$$= P_{phys}(x)$$

Equivalent to minimizing

 $D_{\mathrm{KL}}(P_{\mathrm{RBM}}||P_{\mathrm{phys}})$

RBM CRBM Examples Summary

Introduction

• How to train RBM? How to choose W? • Measure \rightarrow How close is P_{RBM} to P_{phys} ?

$$\Delta E(x^{(i)}; W) = E_{\text{phys}}(x^{(i)})\beta - F_{\text{RBM}}(x^{(i)}; W)$$
$$\log(W) = \frac{1}{M} \sum_{i=1}^{M} \Delta E(x^{(i)}; W)^2$$

• If loss(W) = 0
$$\longrightarrow P_{\text{RBM}}(x) = \frac{e^{-F_{\text{RBM}}(x)}}{Z_R}$$

= $\frac{e^{-\beta E(x)}}{Z}$
= $P_{\text{phys}}(x)$

Equivalent to minimizing

 $D_{\mathrm{KL}}(P_{\mathrm{RBM}}||P_{\mathrm{phys}})$

RBM CRBM Examples Summary

Introduction

• How to train RBM? How to choose W? • Measure \rightarrow How close is P_{RBM} to P_{phys} ?

$$\Delta E(x^{(i)}; W) = E_{\text{phys}}(x^{(i)})\beta - F_{\text{RBM}}(x^{(i)}; W)$$
$$\log(W) = \frac{1}{M} \sum_{i=1}^{M} \Delta E(x^{(i)}; W)^2$$

• If loss(W) = 0
$$\longrightarrow P_{\text{RBM}}(x) = \frac{e^{-F_{\text{RBM}}(x)}}{Z_R}$$
$$= \frac{e^{-\beta E(x)}}{Z}$$
$$= P_{\text{phys}}(x)$$

Equivalent to minimizing

 $D_{\mathrm{KL}}(P_{\mathrm{RBM}}||P_{\mathrm{phys}})$

RBM CRBM Examples

Introduction

Summary

• How to train RBM? How to choose W? • Measure \rightarrow How close is P_{RBM} to P_{phys} ?

$$\Delta E(x^{(i)}; W) = E_{\text{phys}}(x^{(i)})\beta - F_{\text{RBM}}(x^{(i)}; W)$$
$$\log(W) = \frac{1}{M} \sum_{i=1}^{M} \Delta E(x^{(i)}; W)^2$$

• If loss(W) = 0
$$\longrightarrow P_{\text{RBM}}(x) = \frac{e^{-F_{\text{RBM}}(x)}}{Z_R}$$
$$= \frac{e^{-\beta E(x)}}{Z}$$
$$= P_{\text{phys}}(x)$$

Equivalent to minimizing

 $D_{\mathrm{KL}}(P_{\mathrm{RBM}}||P_{\mathrm{phys}})$

RBM CRBM Examples

Introduction

Introduction RBM CRBM Examples Summary

0

$$loss(W) = \frac{1}{M} \sum_{i=1}^{M} \Delta E(x^{(i)}; W)^2$$

Optimize $W \to \text{Gradient descent:} W_{ij} \to W_{ij} - \lambda_r \frac{\delta loss(W)}{\delta W_{ij}}$

• Which states $x^{(i)}$ do we train with? • States sampled from $P_{\rm phys}$

> sample $P_{\text{phys}} \rightarrow \text{train } P_{RBM} \rightarrow \text{sample } P_{\text{phys}}$ **Problem!!!**

Introduction RBM CRBM Examples Summary

0

$$loss(W) = \frac{1}{M} \sum_{i=1}^{M} \Delta E(x^{(i)}; W)^{2}$$

Optimize $W \to \text{Gradient descent: } W_{ij} \to W_{ij} - \lambda_r \frac{\delta loss(W)}{\delta W_{ij}}$

• Which states $x^{(i)}$ do we train with? • States sampled from $P_{\rm phys}$

> sample $P_{\text{phys}} \rightarrow \text{train } P_{RBM} \rightarrow \text{sample } P_{\text{phys}}$ **Problem!!!**

Introduction RBM CRBM Examples Summary

0

$$loss(W) = \frac{1}{M} \sum_{i=1}^{M} \Delta E(x^{(i)}; W)^2$$

Optimize $W \to \text{Gradient descent:} W_{ij} \to W_{ij} - \lambda_r \frac{\delta loss(W)}{\delta W_{ij}}$

• Which states $x^{(i)}$ do we train with? • States sampled from $P_{\rm phys}$

> sample $P_{\text{phys}} \rightarrow \text{train } P_{RBM} \rightarrow \text{sample } P_{\text{phys}}$ **Problem!!!**

Problems RBM

- Problems:
 - Need to do Metropolis (expensive)
 - ${}^{\bullet}$ More particles \rightarrow matrix $W \, \mathrm{is} \, \, \mathrm{larger} \rightarrow \mathrm{longer} \, \mathrm{training}$
- Solution:
 - Symmetries!!
 - Translational invariance (Convolutional RBM)
 - Number of parameters $\mathcal{O}(L^4) \to \text{not } L$ dependent
 - $^{\rm o}$ CRBM \rightarrow fully convolutional \rightarrow same CRBM for different L
 - $^{\rm o}$ Train small L \rightarrow Sample large L

sample P_{phys} with Metropolis at $L_{\text{small}} \rightarrow \text{train } P_{CRBM}$ at $L_{\text{small}} \rightarrow \text{sample } P_{\text{phys}}$ at L_{large}

Introduction

RBM

CRBM

Examples

Problems RBM

- Problems:
 - Need to do Metropolis (expensive)
 - ${}^{\bullet}$ More particles \rightarrow matrix $W \, \mathrm{is} \, \, \mathrm{larger} \rightarrow \mathrm{longer} \, \mathrm{training}$
- Solution:
 - Symmetries!!
 - Translational invariance (Convolutional RBM)
 - Number of parameters $\mathcal{O}(L^4) \rightarrow \text{not } L$ dependent
 - $^{\rm o}$ CRBM \rightarrow fully convolutional \rightarrow same CRBM for different L
 - $^{\rm o}$ Train small L \rightarrow Sample large L

sample P_{phys} with Metropolis at $L_{\text{small}} \rightarrow \text{train } P_{CRBM}$ at $L_{\text{small}} \rightarrow \text{sample } P_{\text{phys}}$ at L_{large}

Introduction

RBM

CRBM

Examples

Problems RBM

- Problems:
 - Need to do Metropolis (expensive)
 - ${}^{\bullet}$ More particles \rightarrow matrix $W \, \mathrm{is} \, \, \mathrm{larger} \rightarrow \mathrm{longer} \, \mathrm{training}$
- Solution:
 - Symmetries!!
 - Translational invariance (Convolutional RBM)
 - Number of parameters $\mathcal{O}(L^4) \to \text{not } L$ dependent
 - $^{\rm o}$ CRBM \rightarrow fully convolutional \rightarrow same CRBM for different L
 - $^{\rm o}$ Train small L \rightarrow Sample large L

sample P_{phys} with Metropolis at $L_{\text{small}} \rightarrow \text{train} P_{CRBM}$ at $L_{\text{small}} \rightarrow \text{sample} P_{\text{phys}}$ at L_{large}

Introduction

RBM

CRBM

Examples

RBM

CRBM

Examples

Summary

Examples

2D Ising Model

- Proof of concept
- Nearest neighbour interaction $\rightarrow 2x^2$ kernel (11 parameters vs $\mathcal{O}(L^4)$)
- $^{\rm o}$ Sufficient to train at L=3

Introduction RBM CRBM Examples

Summary

2D Ising Model

- Proof of concept
- Nearest neighbour interaction $\rightarrow 2x^2$ kernel (11 parameters vs $\mathcal{O}(L^4)$)
- $^{\rm o}$ Sufficient to train at L=3

Introduction RBM CRBM

Summary

Examples

Kitaev Model $\mathcal{H} = -J_x \sum_{\langle i,j \rangle_x} \sigma_i^x \sigma_j^x - J_y \sum_{\langle i,j \rangle_y} \sigma_i^y \sigma_j^y - J_z \sum_{\langle i,j \rangle_z} \sigma_i^z \sigma_j^z$

Introduction RBM CRBM Examples

- Summary
- Quantum spin liquid Analytical ground state
- Fractionalized Quasiparticles: • Z_2 gauge fields $u_{ij} = \pm 1$
 - Itinerant Majorana fermions

- Monte Carlo on the gauge field $u_{ij} = \pm 1$
- $^{\rm o}$ Each MC step \rightarrow Trace out it inerant Majorana fermions
- Solve eigenvalue problem $O(L^6) \rightarrow$ Only small simulations L<20

Kitaev Model $\mathcal{H} = -J_x \sum_{\langle i,j \rangle_x} \sigma_i^x \sigma_j^x - J_y \sum_{\langle i,j \rangle_y} \sigma_i^y \sigma_j^y - J_z \sum_{\langle i,j \rangle_z} \sigma_i^z \sigma_j^z$

Introduction

RBM CRBM

Examples

- Summary
- Quantum spin liquid Analytical ground state
- Fractionalized Quasiparticles: • Z_2 gauge fields $u_{ij} = \pm 1$
 - Itinerant Majorana fermions

- Monte Carlo on the gauge field $u_{ij} = \pm 1$
- $^{\rm o}$ Each MC step \rightarrow Trace out it inerant Majorana fermions
- Solve eigenvalue problem $O(L^6) \rightarrow$ Only small simulations L<20

Kitaev Model

$$\mathcal{H} = iJ_x \sum_{x \text{ bonds}} c_w c_b - iJ_y \sum_{y \text{ bonds}} c_b c_w - iJ_z \sum_{z \text{ bonds}} uc_b c_w$$

- Quantum spin liquid Analytical ground state
- Fractionalized Quasiparticles: • Z_2 gauge fields $u_{ij} = \pm 1$
 - Itinerant Majorana fermions

- Monte Carlo on the gauge field $u_{ij} = \pm 1$
- $^{\rm o}$ Each MC step \rightarrow Trace out itinerant Majorana fermions
- Solve eigenvalue problem $O(L^6) \rightarrow$ Only small simulations L<20

RBM

CRBM

Examples

Kitaev Model

$$\mathcal{H} = iJ_x \sum_{x \text{ bonds}} c_w c_b - iJ_y \sum_{y \text{ bonds}} c_b c_w - iJ_z \sum_{z \text{ bonds}} uc_b c_w$$
Quantum spin liquid

- Analytical ground state
- Fractionalized Quasiparticles: • Z_2 gauge fields $u_{ij} = \pm 1$
 - Itinerant Majorana fermions

- Monte Carlo on the gauge field $u_{ij} = \pm 1$
- $^{\rm o}$ Each MC step
 \rightarrow Trace out itinerant Majorana fermions
- Solve eigenvalue problem $O(L^6) \rightarrow$ Only small simulations L<20

RBM

CRBM

Examples

• Previous work \rightarrow no critical exponents

- Sampling $P(x) \rightarrow \text{difficult}$
- Method \rightarrow Markov chain
- Objective:
 - Markov Chain \rightarrow moves quickly
- RBM has a P(x; W) and a Markov Chain P(x'|x; W)
 - Learn $P_{RBM}(x; W) \simeq P_{phys}(x)$ • Sample from RBM
 - Translational invariance \rightarrow CRBM
 - Train at small $L \to$ Sample at large L
 - Ising model \rightarrow Proof of concept
 - Kitaev model \rightarrow MC larger lattices

Introduction

RBM

CRBM

Examples

- Sampling $P(x) \rightarrow \text{difficult}$
- Method \rightarrow Markov chain
- Objective:
 - Markov Chain \rightarrow moves quickly
- RBM has a P(x; W) and a Markov Chain P(x'|x; W)
 - Learn $P_{RBM}(x; W) \simeq P_{phys}(x)$ • Sample from RBM
 - ${}^{\rm o}$ Translational invariance \rightarrow CRBM
 - Train at small $L \to$ Sample at large L
 - Ising model \rightarrow Proof of concept
 - Kitaev model \rightarrow MC larger lattices

Introduction

RBM

CRBM

Examples

- Sampling $P(x) \rightarrow \text{difficult}$
- Method \rightarrow Markov chain
- Objective:
 - Markov Chain \rightarrow moves quickly
- RBM has a P(x; W) and a Markov Chain P(x'|x; W)
 - Learn $P_{RBM}(x; W) \simeq P_{phys}(x)$ • Sample from RBM
 - $^{\rm o}$ Translational invariance \rightarrow CRBM
 - $^{\rm o}$ Train at small $L \rightarrow$ Sample at large L
 - Ising model \rightarrow Proof of concept
 - Kitaev model \rightarrow MC larger lattices

Introduction

RBM

CRBM

Examples

- Sampling $P(x) \rightarrow \text{difficult}$
- Method \rightarrow Markov chain
- Objective:
 - Markov Chain \rightarrow moves quickly
- RBM has a P(x; W) and a Markov Chain P(x'|x; W)
 - Learn $P_{RBM}(x; W) \simeq P_{phys}(x)$ • Sample from RBM
 - $^{\rm o}$ Translational invariance \rightarrow CRBM
 - ${}^{\rm o}$ Train at small $L \to$ Sample at large L
 - Ising model \rightarrow Proof of concept
 - Kitaev model \rightarrow MC larger lattices

Introduction

RBM

CRBM

Examples