

Topology of Language

Topological Techniques for Natural Language Processing

Vision

Language has structure

Many layers of structure

We could build a category from this

Yoneda embedding of a document?

All the constituent parts of the document

Simplify: all the word usages in a document

This is the classical "bag-of-words" model

What about words? In the opposite category...

A word is the set of all its usages in a corpus

Simplify: all the sentences that use the word

You shall know a word by the company it keeps — John Rupert Firth

Words as Distributions

Overview

Represent a word as a document of all the sentences that use the word

Represent such a document using a bag-of-words model

Represent a word as the multinomial distribution of words that occur nearby

Information geometry tells us that multinomial distributions live on a manifold

$$d(p,q) = \arccos\left(\sum_{i} \sqrt{p_i} \sqrt{q_i}\right)$$

We can explore the geometry of words under this distance metric

Messy Details

Some problems:

- Word order matters
- Words carry different amounts of information
- Language use is noisy

Words order matters:

Words used *before* a given word Words used *after* a given word

Information in words:

Approximate the information of a word in a given context and weight words accordingly

Language is noisy:

Approximate a background noise model of word use and decompose the multinomial into a mixture of signal and noise distributions

Where do we get models of entropy and noise?

Where

X is an $N \times D$ matrix

U is an $N \times d$ matrix

V is an $d \times D$ matrix

Minimize

$$\sum_{i=1}^{N} \sum_{j=1}^{D} \text{Loss} \left(X_{ij}, (UV)_{ij} \right)$$

Subject to constraints...

Suppose

 $X \sim \Pr(\cdot \mid \Theta)$

where

 $\Theta = UV$

Let the loss be the negative log likelihood of observing X given Θ

Multinomial Matrix Factorization

Minimize

$$\sum_{i=1}^{N} \sum_{j=1}^{D} - (UV)_{ij} \cdot \log \left(X_{ij}\right)$$

Subject to

$$(UV)1 = 1 \text{ and } (UV)_{ij} \ge 0$$

Probabilistic Latent Semantic Analysis

Minimize

$$\sum_{i=1}^{N} \sum_{j=1}^{D} - (UV)_{ij} \cdot \log \left(X_{ij}\right)$$

Subject to

$$U1 = 1, V1 = 1 \text{ and } U_{ij} \ge 0, V_{ij} \ge 0$$

Θ provides a low rank multinomial distribution model

 Θ_{ij} is the "background" probability of word j occurring in the context of word i

 $-\log(\Theta_{ij})$ is an approximation of the information carried by word j in the context of word i

We can weight each entry by the (approximate) information it carries

A rank 1 model gives classical TF-IDF from NLP

 Θ_i provides a model of the "background" multinomial of word occurrence in the context of word i

We can use an EM algorithm to decompose a given multinomial into noise and signal

We are back to where our overview left off...

Embedding Words

We have high quality and high dimensional representations of words with a natural ambient geometry ...

We need a low dimensional representation that preserves topology

UMAP is a topology based dimension reduction algorithm

Assumptions: Uniform distribution Locally connected

Assumptions: Uniform distribution Locally connected

We now have a filtered simplicial complex

Optimize a low dimensional representation via cross-entropy

$$\sum_{a} \mu(a) \log \left(\frac{\mu(a)}{\nu(a)}\right) + (1 - \mu(a)) \log \left(\frac{1 - \mu(a)}{1 - \nu(a)}\right)$$

$$d(p,q) = \arccos\left(\sum_{i} \sqrt{p_i} \sqrt{q_i}\right)$$

Embedding Yelp Reviews

A lot of structure to explore!

What is the persistent homology of UMAP's simplicial sheaf representation?

Documents as Distributions

Represent a document using a "bag-of-words" model

Represent a document as the multinomial distribution of words occurring in the document

Information geometry tells us that multinomial distributions live on a manifold

$$d(p,q) = \arccos\left(\sum_{i} \sqrt{p_i} \sqrt{q_i}\right)$$

Some problems:

- Word order matters
- Words carry different amounts of information
- Language use is noisy
- Words are not independent / orthogonal

We can't fix word order issues this time (yet)

Information in words:

Approximate the information of a word in a given context and weight words accordingly

Language is noisy:

For larger documents we can hope to have the noise wash out in the background

This red rose smells sweet

That scarlet flower's fragrance is delightful

A document as a multinomial is averaging one-hot encodings of words

We can perform a change of basis to word vectors

$$D' = D \times W_{pLSA}$$

We are taking averages, so we should remove noise again ...

Embedding Documents

UMAP is a topology based dimension reduction algorithm

Since words and documents now live in the same combined space we can embed both together

This can provide powerful tools for topic modelling

Conclusions

We can use topological techniques to explore and represent language

Many of these ideas provide a mathematical basis for variations on existing techniques

This remains a rich field for further exploration