

SELF-CORRECTING QUARITY MANE-BODY CONTROL USING REINFORCEMENT LEARNING WITH FENSOR NETWORKS

arXiv:2201.11790

Friederike Metz and Marin Bukov

UANTUM MANY-BODY CONTROL

Essential for most quantum technologies (computing, simulation, metrology)

e.g. state preparation

Problem: Hilbert space dimension grows exponentially with system size

Problem: Hilbert space dimension grows exponentially with system size Our control framework: Deep reinforcement learning (RL) with matrix product states (MPS)

> Compressing the quantum many-body state

Trainable machine learning architecture for the RL agent

QUANTUM MANY-BODY CONTROL

Essential for most quantum technologies (computing, simulation, metrology)

Problem: Hilbert space dimension grows exponentially with system size Our control framework: Deep reinforcement learning (RL) with matrix product states (MPS)

Compressing the quantum many-body state

time steps

Trainable machine learning architecture for the RL agent

REINFORCEMENT LEARNING

Q-learning: Learn optimal Q values $Q^*(s, a)$ Maximum expected sum of future rewards if you start in state *s* and take action *a*

> Mnih et al., Nature 518, 529–533 (2015) R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction. MIT press

REINFORCEMENT LEARNING

Q-learning: Learn optimal Q values $Q^*(s, a)$ Maximum expected sum of future rewards if you start in state *s* and take action *a*

Mnih et al., Nature 518, 529–533 (2015) R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction. MIT press

. . .

. . .

RL environment

RL environment

State

RL environment

State

Action

RL environment

State

Action

Reward (Goal: Prepare target state $|\psi_*\rangle$)

QMPS agent

QMPS agent

Quantum state input (MPS)

QMPS agent

Trainable parameters (MPS)

Quantum state input (MPS)

QMPS agent

- Neural network (NN)
- Trainable parameters (MPS)
- Quantum state input (MPS)

QMPS agent

- Neural network (NN)
- Trainable parameters (MPS)
- Quantum state input (MPS)

\rightarrow QMPS: Resources scale only linearly in system size N

Mixed-field Ising: $\hat{H}_{\text{Ising}} = J \sum_{i=1}^{N-1} \hat{Z}_i \hat{Z}_{i+1} - g_x \sum_{i=1}^N \hat{X}_i - g_z \sum_{i=1}^N \hat{Z}_i$

Mixed-field Ising: $\hat{H}_{\text{Ising}} = J \sum_{i=1}^{N-1} \hat{Z}_i \hat{Z}_{i+1} - g_x \sum_{i=1}^N \hat{X}_i - g_z \sum_{i=1}^N \hat{Z}_i$

QMPS agent can devise optimal protocols from various initial states

QMPS agent can extrapolate optimal protocols well beyond training region

Noise: At each step, white Gaussian noise $(\mathrm{e}^{\pm i\delta t_{\pm}\hat{A}})$ with std σ is added to step duration δt

Noise: At each step, white Gaussian noise $(\mathrm{e}^{\pm i\delta t_{\pm}\hat{A}})$ with std σ is added to step duration δt

Noise: At each step, white Gaussian noise $(\mathrm{e}^{\pm i\delta t_{\pm}\hat{A}})$ with std σ is added to step duration δt

Noise: At each step, white Gaussian noise $(\mathrm{e}^{\pm i\delta t_{\pm}\hat{A}})$ with std σ is added to step duration δt

QMPS agent can self-correct protocols on-the-fly

MORE EXAMPLES

Outlook

> Map MPS to quantum circuit \rightarrow integrate with NISQ device simulations

 \blacktriangleright Study ansatz/data/training using MPS toolbox \rightarrow interpretable machine learning

Outlook

> Map MPS to quantum circuit \rightarrow integrate with NISQ device simulations

> Study ansatz/data/training using MPS toolbox \rightarrow interpretable machine learning **THANK YOU!**

