Machine learning for Quantum Control Quantum Cartpole

Kai Meinerz, Evert van Nieuwenburg

Institute for Theoretical Physics, University of Cologne

Niels Bohr Institute, University of Copenhagen

1

Quantum Cartpole

Quantum Control

Quantum Control is necessary for Quantum computing, NISQ, Quantum memory!

Google AI Blog

Quantum Cartpole

Cartpole

OpenAl

Quantum Cartpole

3

Quantum Cartpole

Quantum Cartpole

Quantum Cartpole

Quantum Cartpole Kai Meinerz, Institute for Theoretical Physics, University of Cologne

Quantum Cartpole

Kai Meinerz, Institute for Theoretical Physics, University of Cologne

Quantum Cartpole

Quantum Measurement

Heisenberg Uncertainty Principle

uncertaintyuncertaintypositionmomentummeasurementmeasurement

Quantum Cartpole

Quantum Measurement

Kai Meinerz, Institute for Theoretical Physics, University of Cologne

niversity of Coloane

Quantum Measurement

Kai Meinerz, Institute for Theoretical Physics, University of Cologne

niversity of Cologne

Weak Measurements

delocalizes with time

Quantum Cartpole

ML4 MATTER AND LIGHT FOR QUANTUM COMPUTING MATTER AND LIGHT FOR QUANTUM COMPUTING MATTER AND LIGHT FOR QUANTUM COMPUTING

Weak Measurements

delocalizes with time

Weak measurement:

$$|\Psi\rangle = |\psi\rangle_{system} \otimes |\phi\rangle_{ancilla}$$

$$U = e^{-i\lambda x_{system} \otimes p_{ancilla} dt}$$

Found Phys 47, 697-707 (2017)

Quantum Cartpole

Weak Measurements

Quantum Cartpole

Quantum Cartpole environment

Quantum Cartpole

Quantum Cartpole environment

Quantum Cartpole

Applied controls

Quantum Cartpole

Applied controls

Quantum Cartpole

Conclusion

• Build a quantum benchmark environment for RL

• Stabilized the wavefunction in the quantum and classical regime

Quantum Cartpole

Kai Meinerz, Institute for Theoretical Physics, University of Cologne

Connect RL with quantum control

Thank you for your attention!

Quantum Cartpole