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Total final energy by end-use in the EU28
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Heating & Cooling, facts and figures
www.heatroadmap.eu (June 2017)
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The role of district heating

Oil
Heat pumps electricy) P ters s “District energy can play a key role in
1% 4%
\ / solar therm decarbonising heating and cooling, by
% enabling high levels of energy
| fif;;ass efficiency and renewable energy and
sector coupling”

Coal

8% Towards a decarbonized heating and cooling sector in Europe,
Aalborg University (2019)
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Heating & Cooling, facts and figures
www.heatroadmap.eu (June 2017)
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2 MW

AR ' 2. == | Aarhus district heating system

75 MW
i

@ ** Supply 350,000 people (95% of population)

Waste

80 MW
CHP
Straw

' +» 60,000 consumer substations
Straw

5 MW
Heat plant
Straw

s 1500 MW heating peak capacity

»» 100% CO,-neutral heating production
2 3200 GWh annual heating production

22 MW
CHP

»» Central transmission line at 80-100°C
* 54 independent distribution systems at 60-80°C
2300 km pipeline in total
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P00 Puwsaaning

Background
e 6 o o o



Strategic energy planning

GOAL: Afully decarbonised and renewable
smart energy system in 2050

HOW?: More renewable heat production

4

Reduce heating demand
+ lower distribution temperatures

4

Need a better basis for decision

Long-term heat load forecast # Data
+ platform for analysis intelligence
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Smart meter consumption data
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% 60,000 heat meters S i
& H i N8 = 2%
* Hourly readings e L |/
s Heating consumption, volume flow, temperature, etc. R
*» Data available from 2017 onwards
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Urban building energy modelling



Urban building energy modelling

Urban building energy modelling seeks to facilitate analyses on
the building stock by combining effects of individual bottom-up
building models into an aggregated urban-scale model:

% Heat load forecasting

% Analysis of how building heat load is affected by, for example:

« Retrofit
« Climate change
« Demand response (flexible heating demand)
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Individual buildings

L)

>

Buildings are modelled individually

L)

North

v
o R — o
West <€— B g . e % Simplified geometry
South % Space heating model
r o™ <+ Domestic hot water model
pEE e
@\@\
. s Around 20-25 unknown input parameters
L :
MV | oo per building!
‘%m app oce sol
i, 4
:
cA. —__: /
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Challenges of
urban modelling

Model complexity and simulation time

Data requirements

Solution

Simplify the models

Rely on data to infer parameter values




Archetype simplification

i
1. Identify a reduced number of unique building

typologies (archetypes), which are aith ﬁ
representative for the building stock.

Y

m
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2. The archetypes are carefully examined and their
technical parameters are either measured or
calibrated using observed data.

3. The archetype values are used to populate input

A
0Ly e
parameters of all similar buildings in the urban & ‘33
building energy model. LULIgp® By
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Case study:
Heat load of single-family houses
in Aarhus, Denmark




Case study:
istrict heating-supplied
Single-family houses in Aarhus

s 18,475 SFH’s after data preprocessing

* Known data:
1. Danish Building and Dwelling Register
2. Hourly district heating consumption
3. Weather data
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Archetype segmentation rivope  Eumple  Daldegpeed  Semesion s
) Single-family dwellings consist of smallholdings and
Archetype 1 Before 1851 detached £ ouses
Archetype 2 1851-1930 Shift in building tradition
All 18,475 buildings were assigned an
a rC h ety p e I a b e I Archetype 3 1931-1950 Cavity walls introduced
Archetype 4 1951-1960 Insulated cavity walls introduced
35 T T T T T T T T T T T
30 Archetype 5 1961-1972 First energy requirements in BR1961
» 25 Archetype 6 1973-1978 Tightened energy requirements in BR1972
(=]
=
O
_g 20 Archetype 7 1979-1998 Tightened energy requirements in BR1978.
ks
c
© 15 ) . .
'-8 Archetype 8 1999-2006 Tightened energy requirements in BR1998.
o
18
10
Archetype 9 2007-2010 Tightened energy requirements in BR2006/BR2008
5
Archetype 10 |‘,_ 2011-2015 Tightened energy requirements in BR2010
0 -
Archetype 11 After 2015 Tightened energy requirements in BR2015
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Uncertain model parameter Unit Prior range Archetype - -
w20 07 vt Archetype characterization
Geomerry
Length-width-ratio [-] 0.10 1.00 050 050 050 050 050 050 050 050 050 050 050
Room height [m] 230 3.00 240 260 250 250 250 250 250 260 270 270 270
‘ Window-floor-ratio® [m?/m?] 0.10 050
Window frame fraction [%] 10 50 30 30 25 25 25 25 20 15 15 15 15
< Uncertain input parameters were assigned
Temp. factor (ground) [-] 050 1.00 070 070 070 070 070 070 070 070 070 070 0.70
- @ 010 05 050 03 03 030 030 02 a2 012 012 012 012 values based on expert knowledge
U-value (basement) [W/(le)] 0.10 120 .00 1.0 LO0O 065 040 035 030 020 0.8 0.8 0.8
‘ U-value (walls/roof)* [W/(m?K)] 0.0 050
‘ U-value (windows)* [W/(m?K)] 070 5.00 < B - |d H 'th H h t I b I h d
Solar heat gain coef. [-] 050 0.70 0.60 060 060 060 060 060 050 050 050 050 050 ”’ u I I n g S WI a g Ive n a rC e ype a e S a re
‘ Thermal capacity (mass)* [kJ/(m2K)] 50 2000 rt 1 t I
Effective area (mass)™™ [m?/m?] 25 35 Building specific, see the ISO 13790:2008 standard u n Ce a I n pa ra m e e r Va u eS
Heat conduction (mass)** [“’/(mzK)] 910 9.10 9.10 910 910 910 910 910 910 910 910 910 9.10
Heat transfer coef. (surf.-air)™  [W/(m?K)] 345 345 345 345 345 345 345 345 345 345 345 345 34
Ventilation
‘ Infiltration airflow™ [1/(sm?)] 0.10 80
Mechanical ventilation | Yes/No] No Yes No No No No No No Yes Yes Yes Yes Yes
Heat recovery efficiency [%] 50 90 N/A NA NA NA NA NA 60 70 85 85 85
Design ventilation airflow [I/(sm: | 0.10 030 030 030 030 030 030 030 030 030 030 030 030 M OSt S e n S i t i Ve p a ra m ete rS
Occupancy
‘ Occupant density™ [m?/pers.] 10 150 .
‘ Heating setpoint temp.* [*C] 180 240 S h O u I d tO b e Ca I I b rate d
‘ 24h profile weekdays™ [%] 0 100
‘ 24h profile weekends/holidays*  [%] 0 100 .
Domestic hot water W I t h d a ta
DHW temperature [*C] 400 600 55.0 550 550 550 550 550 550 550 550 550 550
Mains temperature [*C] 5.0 15.0 10,0 100 100 100 100 100 100 100 100 100 100
Circulation pipe heat loss [W/K] 0.00 20.0
‘ Hot water consumption™ [m®/(persyr)] 5 20
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Archetype calibration

Archetype averaging
before calibration

Booth et al. (2012)
¢ Full pooling of data

% Only the archetype model is calibrated

( ‘ Archetype ayeraging
Cerezo et al. (2017) e — ’ — after calibration

“* No pooling of data

 All training buildings are modelled independently

% Post pooling of calibration result

Background Case study Archetype calibration




Energy & Bulldings 75 (2018) 219-234

Contents lists available at ScienceDirect

Hierarchical calibration:
A new method

Energy & Buildings

journal homepage: www.elsevier.com/locate/enbuild

Hierarchical calibration of archetypes for urban building energy )
modeling |

Martin Heine Kristensen®, Rasmus Elbezk Hedegaard, Steffen Petersen

Deparenent of Engimeering, Actias Unwersicy, 5000 Agtas, Devmak

ARTICLE INFO ABSTRACT

Kristensen et al. (2012)
< B ayes ian pro babil |ty smevea Ty e i, Working weh rcheypes o s ronge f beelt, s 5 iporten tht modeles s st

Acceped & Juy 2018 oversimplified appcwd'fes ?vhen establifhfng the archet)-pc as !hv.) lead to loss of uncertainty and, con-
Aailable caline 17 Jay 2018 sequently, to models with inferior predictive capabilities. In this paper, we propose 3 multilevel take on
the challenge of establishing archetypes. A simultanecus modeling and calibeation framework is formu-
Keywerds: lated using Bayesian inference techniques - a technique that allows for the propagation of uncertainty
* . Archesypes throughout the calibration process. By means of hierarchical modeling, information from traiming build-
< Archetype model is modelled as the mean = 5 =l o i o pe e e e g e
* Hierarchical modeling and a completely pooled model. This enables the inference of uncertain archetype parameters that are
Mukficved modefing less prone to building outliers than what is achieved using ordinary aggregation of individual building

Egyesian calibravon The e o N . N " |
Fredicion J prop f incorporates dynamic building energy modeling of arbitrary tempocal
Archesype homogeneky resolution where uncertain parameters are fitted for indwidual building models and the archetype model
Smart meter simultansously. The application of the framework is demonstrated using case-study data from the Dan-
ish residential building stock, ining 3-hourly me of emergy use for 50 traiming buildings.
The model is tested for the prediction of 100 cut-of-sample test buildings’ aggregated energy use time
series on a boldout validation period. With a prediction error of only NMBE =29 and CVRMSE - 7.82,

the archetype framework promises well for urban modeling applications.

© 2018 Elsevier BV. All rights reserved.

1. Introduction urban area without introducing 100 many assumptions and sim-
plifications |1). Because of this, the establishment of an accurate

Gity governments, utility companies, and other epergy policy  all-inclusive physics-based UBEM persists to be an extremely dif-
stakeholders work on the urban scale of neighborhoods, cities, or fcult task. However, one can make use of different rechniques

NGO
B

Sample building b n, exchangeable building

realizations from archetype

even entire building stocks when planning and predicting the ef-
fect of various energy efficiency and production strategies. They are
in need of tools and pladorms that enable the analysis of aggre-
gated effects rather than individual building-level effects.

Urban building energy modeling (UBEM) is a growing research
fleld thar seeks 1o facilitate such analyses by combining the ef-
fects of individual buiklings into an aggregated urban model. The
modeling approach of UBEM is either to model buildings indepen-
dently and then aggregate their simulated energy use, or to model
buildings collectively in an all-inclusive urban model with context-
specific boundary conditions and interactve effects. Regardless of
the modeling approach, the overall challenge of UBEM is to cok
lect and assign all the necessary data inpurs for establishing suf-
ficiently detailed building energy models of all buildings in the

¢ Corresponding auhor.
Emal oddress: mhid®eng.aadk (MH. Krizensen).

huips:)) dolorg) 10.1016)) enbuild 2018.00.030
0378 7763)© 2018 Elsevier RV. Al righes reserved.

for reasonable tradeoffs berween feasibility and accuracy 1o over-
come this; of these echniques, the application of archetype mod-
els seems [0 offer an awractive solution.

11. Archetype modeling

The archetype approach seeks to reduce the number of build-
ings in a given building stock or urban area 10 a much smaller
subset of homogeneous archetypes that represent groups of typo-
logically identical buildings where informarion that would allow
further differentiation is typically not available. This approach in-
evitably obscures the narural variability of occupant behavior and
construction elements, but in tum reduces requirements for data
acquisition and computational load.

The definition and use of building archetypes for urban-scale
modeling have undergone a lot of work in recent years. In general,
the literature describes the process of defining archetypes as con-
sisting of three steps before simulation: (1) classification of build-

Background Case study Archetype calibration




Hierarchical calibration:
A new method

Kristensen et al. (2012)
s+ Bayesian probability
“ Archetype model is modelled as the mean

¢ This allows us to assess the heterogeneity

of the archetype

7‘0]3 ~ N([L,Z), b:1,2,...,nb.

Mean of calib. params.

Calibration parameters

Background Case study

Covariance of calib. params.

Archetype calibration

Archetype modelling
during calibration
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Hierarchical calibration:
A new method

% Parameters for new unseen buildings belonging to the archetype are drawn stochastically

Drawing values L"
for new buildings [ .

A v".
[ Mean ‘ /|
/ \ —_— .

A

\__\ Variance —

I
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Calibrated archetype parameters

Uwalllroof Uwindow qvent
3 0.8 10
5
A) Weekday schedule B) Weekend and holiday schedule
0.2 0.2
Calibrated training buildings
% 02 04 06 08 1 12 % o5 1 15 2 o1 Lol b ] 018
0.16 0.16
%1073 Con Toat Occ.Density C
1.5 0.6 0.15 S o014 0.14
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o
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3
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0 0
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I-Calibrated training buildings 6, (median values) DNew building 6, (1000draws) 4  Calibrated archetype 4 (median value)
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Archetype predictive performance

100 archetype training buildings
calibrated using 2017 data.

100 training buildings of Archetype 6 (1973-1978)

700
_— Igcasurcd ACCU raCM
600 Simulated .
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5 50 / +  Hourly absolute error < 10%
fuo |
$%0 J ) ! M 100 holdout testing buildings
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100 o v
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AR Y O O O O i < o
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Archetypes are very different

% OlId archetypes have a large and “steady”

consumption pattern

“* New archetypes exhibit a lower and a more

volatile consumption pattern

Background Case study

Archetype 5 (1961-1972)
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Hourly heat load [MW]

Long-term city-scale predictions

L)

*

18,475 building models
Period: 2017 + 2018 with hourly resolution

L)

*

L)

*

Simulation time for 100 stochastic repetitions: appox. 4 hours.
Accuracy: Bias = -0.3% bias; MAPE = 11.8%

L)

*

Prediction of 18,475 SFH's in Aarhus District Heating System
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Long-term city-scale

12 1 1 T T T T
.» _— | -
.. _ predictions
.\ ~
10 | e —
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LN ¢ Prediction accuracy increases if lower
N
81 \‘ 1 temporal resolution of heat load forecasts
< \ .
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Temporal aggregation of heat load forecasts
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Applications



Applications

L)

*

Sizing district heating networks for new urban areas

<,

L)

» Forecasting future production needs and heat load

<,

patterns

L)

» Analyzing the consequences of energy renovation

<,

and future weather conditions

< Analyzing the effect of demand response and

<,

energy flexibility of the building stock

Background UBEM Case study Archetype calibration Results Applications



Consumption kWh]
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Demand response application with . [t re /
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Demand response application with
model predictive control (MPC)

»» Constraints: 20°C < Tipgoor < 24 °C

¢ Prices increased by approx. +60% in peak periods to obtain lowest heat loads

¢ Peak load reductions of approx. 5% in peak periods

¢ Buildings engage in DR at different price levels depending on their energy efficiency

1000

800

600

Consumption [kWh]

400 l 1 1 l
Jan 03 Jan 04 Jan 05 Jan 06 Jan 07 Jan 08

2017
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