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Explainable Al for Establishing Shared Expectations
During Human-Robot Collaboration

Prof. Brad Hayes
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Focus: Human-Machine Teaming

We can only trust Al
if we understand the

Chief Technology Officer decisions it makes
and the process it

i . /_ \ ,,_‘
Circadence Corporation LSt \ncithgl

means knowing a lot "5r‘
more about “how”
Al does what it

Assistant Professor of Computer Science does, and “why.”
University of Colorado Boulder

Director
Collaborative Al and Robotics Lab

Ph.D. Computer Science, Yale

Postdoc, MIT

MileHigh
L@ l,7J H R \ =independently organized TED event
w T Mii & 4 -
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Circadence delivers market leading, immersive, virtual
environments for cyber awareness and learning.

Additional focus on operational tools to help
cyber defenders defeat evolving threats.
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CSAIL at MIT 14 OrHH -
< In 5 days, the @DeepDrumpf Trumpbot @ 7
has Su rpassed us in fol |0We rs W/almost redd“' 7 /MOSTRANDO ARTICULOS POR ETIQUETA: SOCIEDAD

17K. bit.ly/1TcwtAy #Karma N »@
How to Troll Trump and Fundraise for Good, Simultaneously

Inverse - 18 Oct 2016

In March, MIT robotics researcher Bradley Hayes conjured up a Donald Trump—

emulating Twitter bot: @DeepDrumpf. Now, Hayes is throwing ...

Deep Drumpf: the Twitter bot trying to out-Trump the Donald
The Guardian - 4 Mar 2016

MIT project uses ...

MIT built a Donald Trump Al Twitter bot that sounds scarily like ...
Quartz - 4 Mar 2016

DeepDrumpf Twitter Bot Pretty Good at Generating Trumpisms
AdAge.com (blog) - 4 Mar 2016

How the Al Behind Twitter's Odd @DeepDrumpf Is Making ...

Inverse - 4 Mar 2016

How An Al Donald Trumn le Makina Twittar (Sreaat Anain

Highly Cited - Popular £

2016

Newsweek

3o NN

The artificial intelligence that tweets like Donald Trump

~
~

5
D f Twitterbot | ] - i i
Blog - CNET (blog) -8 Halperin12 B 1
View all 216 PM EST dot uses ...
Why This is what scientists do? | want my money back.
Just: _ \l. What Could ...
using Like Reply Share

leepDrumpf which spouted tweets
such as “I'll bring back our Jobs. | hey all have everything, ...

'DeepDrumpf' Is An Uncanny Twitterbot That's Fundraising For ...

Forbes - 19 Oct 2016

DeepDrumpf can be fairly described as a Twitterbot, but it's become a lot more than
that over its several months on the 2016 campaign trail.

T AN MIT Scientist Created A Trump Twitter Bot And It's Scarily ...

.- «. - Paste Magazine - 24 Mar 2016

In the beginning, @DeepDrumpf’s tweets were pure nonsense; now, they at least
resemble coherent statements—though obviously, given the ...

Het Twitteraccount @gEEDg 21 1S gemaakt door wetenschapper bradley He
Twitterbot uses Al algorithm to tweet like Donald Trump universiicit MIT. Het profi wordt bestuurd door lumstmatige intcHigentc, dat« (D Brandon Hayes, Brian Blaney and 2 others
Trumps heeft I rd om patronen te :
Matching the real thing for arrogance may be beyond science’s grasp ‘ _ _ ‘ _ - - y
Op basis van die analyse doet de ‘twitterbot' zelf uitspraken die Trump voigen: Donald Trump at a rally in Florence, South Carolina, on Feb. 5, 2016 John Gallaugher | may have never been more proud of a former student
hebben kunnen doen, zoals bijvoorbeeld "I'm what ISIS doesn't need” (/k ben Credit: Gage Skidmore/Trump Campaign ! Like Reply

red.).
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Collaborative Human-Robot Interaction

Human-in-the-loop artificial intelligence enables robot workers to
make human collaborators safer, more effective, and more efficient.



Collaborative Robotics
“Happy People Smiling With Robots”
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Cages are being replaced by algorithms, sensors, and HRI



Robot

Robot Accidents in the Workplace

WHEN: 3
AUGUST 2011 A
WHERE: :
BAKERY Y METAL FACTORY
WHAT HAPPENED

ry in the robot computer
t for sure. The employee

WHEN: WHEN:
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WHERE: WHERE: L )
CAR FACTORY CAR FACTORY
WHEN:
WHAT HAPPENED: WHAT HAPPENED: () | AUGUST 1
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A robot caught ar An er yee W € t the
employee on the back of f his shift and entere —_ WHERE:
her neck and pinned her T s unlocke e. The robot k_ METAL FACTORY
head between itself grabbed his neck and pinned the

WHAT HAPPENED
employee under a wheel rim. He

WHEN:
NOVEMBER 1
WHERE:
WHEN:

SPORTING GOODS FEBRUARY
MANUFACTURER
WHERE:
WHAT HAPPENED:
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JUNE 1

sine ALUMINUM FACTORY

WHAT HAPPENED
WHERE:

MEATPACKING PLANT

WHAT HAPPENED
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Collaborative Task Execution



Collaborating
During Task Execution




Collaborating
During Task Execution

Shared Expectations:
Decision-making

Shared Expectations:
Behaviors




Donald Michie’s criteria for Machine Learning (ML)

ML occurs whenever a system generates an updated basis building
on sample data for improving its performance on subsequent data.

Weak criterion + ability of system to communicate
internal updates in explicit symbolic form.

Strong criterion + communication of updates must be operationally effective
(i.e. user is required to understand updates and consequences should be drawn from it).






Relating Different Types of Systems
Opaque
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Classitying Wolves vs. Huskies
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Context-sensitive Assistance Using LfD!
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M Learning from Demonstration

.....
0000
e

...but sometimes we aren’t great at demonstrations either
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Did the robot really cépture my intent?



Robust Robot Learning from Demonstration
and Skill Repair Using Conceptual Constraints

[IROS 18]

Carl Mueller Jeff Venicx



A Typical Learning from Demonstration Pipeline

Record Trajectories

Perform Alignment

Cluster and Train Keyframes/Subgoals




What’s Wrong with Learning from Demonstration?

Trajectory-based demonstrations have the lowest overhead
... but also limited information content.

Implied constraints (e.g., cups should be carried upright) are
generally drawn from common sense

... which your robot does not have

‘Common Sense’ from Demonstration requires a prohibitively
large number of trajectories

.. which you probably don’t have time for
.. which you probably have to borrow
.. which you probably still shouldn’t trust




Constrained Task and Motion Planning as a Solution to the
“‘Common Sense Problem”

Orientation  e.g., Grasping and holding constraints
Positional e.g., Above, below, around target or obstacle

Motion  e.g., Speed or Acceleration



Constrained Learning from Demonstration
Key Insights

Narration provides ‘common sense’ substitute:
Soliciting and incorporating high level constraints into subgoal
execution eases correctness burden from training data

Increase Skill Reduce Data Increase Resilience Improve and Repair
Robustness Requirements to Poor Training Existing Skills
Improves execution Learns more flexible, Avoids skill failures Enables one-shot skill
under conditions not generalizable even when trained repair to improve
seen during training representations with sub-optimal existing skills with a

with less data demonstrations single new example



CONSTRAINED LEARNING FROM DEMONSTRATION SUCCESS:
“POURING TASK” ROBOT PERFORMANCE AND ONE-SHOT SKILL REPAIR

100
.\ . Traditional LfD
90 Just ONE narrated
example fixes the skill B cc-Lfp
80 with CC-LfD!
43 70
g
g 60 o X
e 50
%
S
S 40 ® More data doesn’t
- always help!
3 30
a0 After three noisy (but
'a:'; 20 valid) examples, the robot
o cannot perform the task at
Q 10
all
0
0 5 10 15 20 25 30 35

Number of Training Demonstrations Provided
(including 3 poor, but valid, baseline demonstrations)



The Promise of Collaborative Robots




The Reality of Mismatched Expectations
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Improving Robot Controller
Transparency Through
Autonomous Policy Explanation

[HRI 17]




Shared Expectations are Critical for Teamwork

In close human-robot collaboration...

* Humans must be able to plan around robot behaviors

* Understanding failure modes and policies are central
to ensuring safe interaction and managing risk

Fluent teaming requires communication...

* When there’s no prior knowledge
* When expectations are violated
* When there is joint action




Establishing Shared Expectations
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Coordination Graphs
& [Kalech 2010] Hierarchical Task Models

Role-based Feedback Legible Motion [Hayes et al. 2016]
[St. Clair et al. 2016] [Dragan et al. 2013]

Mission 1

-

State Disambiguation Cross-training
[Wang et al. 2016] [Nikolaidis et al. 2013]

Policy Dictation Collaborative Planning
[Johnson et al. 2006]  [Milliez et al. 2016]

Short Term




Semantics for Policy Transfer

4 N\

Under what conditions

will you drop the bar?
\_ /X




Semantics for Policy Transfer

4 N\

Under what conditions

will you drop the bar?
\_ /X




Semantics for Policy Transfer

| will drop the bar when the world is in \
the blue region of state space:




Semantics for Policy Transfer




Semantics for Policy Transfer
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| will drop the bar when the world is

in the blue region of state space:
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State space is too obscure to directly articulate
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State of the Art

Logic Diagram
ST
Descrint Example Thermal processing of metals. The machine hardens the metal in the int *detect_gear = &INPUT1;
escription shape of a steel ring. The hardening process is done by heating the steel fing to —
int ¥ .
a very high temperature, then it goes through a sudden cooling. So the piece we int *gear_x = &INPUT2;

want to harden is heated by passing very high currents through a coil that heats
the piece, then we cool it very quickly by sending cold water through the holes

in each side if (*detect_gear == 1 && *gear_x <= 10 && *gear_x >=8) {
pick_gear(gear_x);

Start/Stop/Switch/

Representation | . g jencid/Valve/Coll

LD Logic

; IN1,2...,M1,CR17...,OUT19... T4
Diagram




Making Opaqgue Systems More Understandable
in 3 Fasy Steps

Computationally Expensive

Approach:
1. Map human-posed queries to state regions Query Analysis
2.  Minimally summarize the identified state regions

Response Generation
3. Communicate query response using natural Ianguage




Concept Representations

Concept library: generic state classifiers mapped to semantic
templates that identify whether a state fulfills a given criteria

Set of Boolean classifiers: State > {True, False}
. Spatial concepts (e.g., “A'is on top of B”)
. Domain-specific concepts (e.g., “Widget paint is drying”)

. Agent-specific concepts (e.g., “Camera is powered”)

L\

on_top(A,B) camera_powered




General Question Templates

When will you do {action}?

Algorithm 2: Identify Dominant-action State Region

Input: Behavioral Model G = {V, E'}, Target Action a;
Output: Set of target states Sr., Set of non-target states
S, \a
Sra +—{}:
S,T.\a — {},
3 foreach s € V do
a + most frequent action executed from s;
if a == a; then S« + S, Us;
else S .o+ S, -aUs;

return Sya, S, c\a:




General Question Templates

Why didn’t you do {action}?

Algorithm 3: Identify Behavioral Divergences

Input: Behavioral Model G = {V, E'}, Target Action a,
Previous state s,, Distance threshold D op st
Output: Explanation of difference between current state
and state region where a; 1s performed,
explanation of where a; is performed locally.
Sre 1}
Sﬂ"\“ — {}
foreach D € {1,..., D yns: } do
foreach s € {v eV | distance(v,s,) < D} do
a < most frequent action executed from s;
if a == a; then S,;« < S,;a Us;
else S .\« ¢« S;aUs;

N B W -

®

expected_region < describe(G, Sra, S +\a);
9 current_region < describe(G, {sp}, Sra);

10 return diff(expected_region, current_region),
expected_region;




General Question Templates

What will you do when {conditions}?

Algorithm 4: Characterize Situational Behavior

Input: Behavioral Model G = {V, E}, Concept Library
C, State region description d, Max action
threshold cluster_max

Output: Explanation of behavior in d, broken down by

action and accompanying state region

S + dict();

descriptions <+ dict();

DNF_description < convert_to_DNF_formula(d, C);

foreach s € {v € V | test_dnf(v,DNF_description) is

True } do

= W N -

5 S[r(s)] « S[n(s)| Us;

6 if |S| > cluster_max then

7 L return too_many_actions_error
8 foreach a € S do

L=

| descriptions[a] + describe(S|a]):;

[

0 return descriptions;




Language Mapping: Model to Response

Recall: Concept library provides dictionary of
classifiers that cover state regions

N

on_top(A,B) camera_powered



Using Concepts to Describe State Regions

We perform state-to-language mapping by applying
a Boolean algebra over the space of concepts

9) @

XAy xX\Vy —X

This reduces concept selection to a set cover problem over state regions

Disjunctive normal form (DNF) formulae enable coverage over arbitrary
geometric state space regions via intersections and unions of concepts

Templates provide a mapping from DNF > natural language



Query Response Process

When do
you inspect
the gear?

I’ll inspect the gear
when I've detected
a gear and I'm at
the conveyor belt.

Find states where

action {inspect(gear)}

is most likely action

at(conveyor_belt)

Detected_gear

—

Find concept mapping
that covers the
indicated states

Detected_gear /\ at(conveyor_belt)

Convert to natural language




Explainable Models are not Enough

Interpretability and comprehensibility enable explanations,

but do not vield explanations themselves!

Reasonable answer:

“My camera didn’t see a gear. | inspect

the gear when it is less than 0.3m w .
. olicy Explanation
from the conveyor belt center and it

has been placed by the gantry.” Root Cause Analysis

Fault Diagnosis




Shaping Robots to Match Human Expectations!

]

Shaping Humans to Match Robot Expectations!



User Study




Realtime Color Sudoku:
A really hard game for humans

EFach plaver gets 3 rows to fill:
I?l player g

near to far, right to left.

There are no turns:

play whenever you're ready




Between-subjects experiment (n=26)

®
2

2/

@
q )

No Interruption

Control Justification

Robot and human play the game concurrently

Human about to play the right move

i |
[_’No interruption by robot

1 1

| |

Human about to play a move

that would lead to failure
T I

No

interruption
by robot

Robot
interrupts

Robot

interrupts

providing
explanation

N

Control:

Players about to make a
mistake were told that they
cannot make that move or
they’ll fail the game.

Justification:

Players about to make a
mistake were told about the
reward inferred they were
missing.

No Interruption:

Players completed the game
without mistakes.



H1:

H2:

Subjective Hypotheses

Participants will find the robot more helpful and useful
when it explains why a failure may occur

Participants will find the robot to be more intelligent
when providing justification for its advice



H1:

Subjective Results: Helpfulness

— p<0.05 —> p<0.05

(o)}

Helpfulness
(mean)

° No Interruption Justification  Control
Conditions

Participants will find the robot more helpful and useful
when it explains why a failure may occur



H1:

H2:

Subjective Hypotheses

Participants will find the robot more helpful and useful
when it explains why a failure may occur

Participants will find the robot to be more intelligent
when providing justification for its advice



Objective Hypothesis

H1: Participants will complete the game faster when provided with justification

But we couldn’t test it.

Auuugh why?t why won't

¥ et ot Game Completion Rate:

Control: 20%
Justification: 80%
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Explainable Al for Establishing Shared Expectations
During Human-Robot Collaboration

41"1 i

H_,.

’;'t"f!

Prof. Brad Hayes

Collaborative Artificial Intelligence and Robotics Lab Bradley.Hayes@Colorado.edu

i i http: .cairo-lab.
% University of Colorado p://www.cairo-lab.com/
Boulder http://www.circadence.com/
Y @hayesbh
AL

CI RCADENCE 7“' http://bradhayes.info


http://www.cairo-lab.com/
http://www.circadence.com/

