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Circadence delivers market leading, immersive, virtual
environments for cyber awareness and learning.

Additional focus on operational tools to help 
cyber defenders defeat evolving threats.







Human-in-the-loop artificial intelligence enables robot workers to 
make human collaborators safer, more effective, and more efficient.

Collaborative Human-Robot Interaction



Robot Co-workersCollaborative Robotics
“Happy People Smiling With Robots”

Cages are being replaced by algorithms, sensors, and HRI



Robot Co-workers



Task Execution



Collaborative Task Execution



Collaborating
During Task Execution

Unsolvable?
Unrelatable?

Unsafe?



Safe

Collaborating
During Task Execution

Shared Expectations:
Decision-making

Shared Expectations:
Behaviors

Understandable

Collaborative



Donald Michie’s criteria for Machine Learning (ML)

Weak criterion:
ML occurs whenever a system generates an updated basis building 
on sample data for improving its performance on subsequent data.

Strong criterion:
Weak criterion + ability of system to communicate 

internal updates in explicit symbolic form.

Ultra-strong criterion:
Strong criterion + communication of updates must be operationally effective 

(i.e. user is required to understand updates and consequences should be drawn from it).



Where is this?



Relating Different Types of Systems

Factory

Factory

Factory

(Halogen lights, fixtures, 
car chassis, …)

f(x)=y

Opaque

Comprehensible

Interpretable



Classifying Wolves vs. Huskies



Learning from Demonstration

…because we aren’t very good at crafting cost/reward functions



Using AI for Road Navigation



Context-sensitive Assistance Using LfD!



Learning from Demonstration

…but sometimes we aren’t great at demonstrations either



Did the robot really capture my intent?



Robust Robot Learning from Demonstration 
and Skill Repair Using Conceptual Constraints

[IROS 18]

Carl Mueller Jeff Venicx



A Typical Learning from Demonstration Pipeline

Record Trajectories

Perform Alignment

Cluster and Train Keyframes/Subgoals



Trajectory-based demonstrations have the lowest overhead 
… but also limited information content.

Implied constraints (e.g., cups should be carried upright) are 
generally drawn from common sense

… which your robot does not have

‘Common Sense’ from Demonstration requires a prohibitively 
large number of trajectories

… which you probably don’t have time for
… which you probably have to borrow
… which you probably still shouldn’t trust

What’s Wrong with Learning from Demonstration?



Constrained Task and Motion Planning as a Solution to the 
“Common Sense Problem”

Orientation e.g., Grasping and holding constraints

Positional e.g., Above, below, around target or obstacle

Motion e.g., Speed or Acceleration



Constrained Learning from Demonstration
Key Insights

Narration provides ‘common sense’ substitute:
Soliciting and incorporating high level constraints into subgoal

execution eases correctness burden from training data

Increase Skill 
Robustness

Improves execution 
under conditions not 
seen during training

Reduce Data 
Requirements

Learns more flexible, 
generalizable 

representations 
with less data

Increase Resilience 
to Poor Training

Avoids skill failures 
even when trained 
with sub-optimal 
demonstrations

Improve and Repair 
Existing Skills

Enables one-shot skill 
repair to improve 

existing skills with a 
single new example
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CONSTRAINED LEARNING FROM DEMONSTRATION SUCCESS:
“POURING TASK” ROBOT PERFORMANCE AND ONE-SHOT SKILL REPAIR

Just ONE narrated 
example fixes the skill 

with CC-LfD!

After three noisy (but 
valid) examples, the robot 
cannot perform the task at 

all

Traditional LfD

CC-LfD

More data doesn’t 
always help!



The Promise of Collaborative Robots



The Reality of Mismatched Expectations





Shared Expectations are Critical for Teamwork

In close human-robot collaboration…

• Humans must be able to plan around robot behaviors
• Understanding failure modes and policies are central 

to ensuring safe interaction and managing risk

Fluent teaming requires communication…

• When there’s no prior knowledge
• When expectations are violated
• When there is joint action



Establishing Shared Expectations

Collaborative Planning
[Milliez et al. 2016]

State Disambiguation
[Wang et al. 2016]

Short Term Long Term

Role-based Feedback
[St. Clair et al. 2016]

Coordination Graphs
[Kalech 2010]

Policy Dictation
[Johnson et al. 2006]

Legible Motion
[Dragan et al. 2013]

Hierarchical Task Models
[Hayes et al. 2016]

Cross-training
[Nikolaidis et al. 2013]



Semantics for Policy Transfer

Under what conditions 
will you drop the bar?



Semantics for Policy Transfer

Under what conditions 
will you drop the bar?



Semantics for Policy Transfer

I will drop the bar when the world is in 
the blue region of state space:



Semantics for Policy Transfer



Semantics for Policy Transfer



12.4827
5.12893
1.12419
0
0
1
3.62242
-40.241
…
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1.12419
0
0
1
-8.1219
-40
…

12.4827
8.51422
1.12419
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1
0
3.62242
-40.241
…

, , …

I will drop the bar when the world is 
in the blue region of state space:



I will drop the bar when the world is 
in the blue region of state space:

12.4827
5.12893
1.12419
0
0
1
3.62242
-40.241
…
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7.125
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0
0
1
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…

12.4827
8.51422
1.12419
0
1
0
3.62242
-40.241
…

, , …

State space is too obscure to directly articulate



State of the Art

int *detect_gear = &INPUT1; 
int *gear_x = &INPUT2; 

if (*detect_gear == 1 && *gear_x <= 10 && *gear_x >= 8) {
pick_gear(gear_x);

}

???



Making Opaque Systems More Understandable
in 3 Easy Steps

Approach:
1. Map human-posed queries to state regions

2. Minimally summarize the identified state regions

3. Communicate query response using natural language

Query Analysis

Response Generation

Computationally Expensive



Concept Representations

Concept library: generic state classifiers mapped to semantic 
templates that identify whether a state fulfills a given criteria

Set of Boolean classifiers: State à {True, False}
• Spatial concepts (e.g., “A is on top of B”)

• Domain-specific concepts (e.g., “Widget paint is drying”)

• Agent-specific concepts (e.g., “Camera is powered”)

on_top(A,B) camera_powered



General Question Templates

When will you do {action}?



General Question Templates

Why didn’t you do {action}?



General Question Templates

What will you do when {conditions}?



Language Mapping: Model to Response

on_top(A,B) camera_powered

Recall: Concept library provides dictionary of 
classifiers that cover state regions



Using Concepts to Describe State Regions

We perform state-to-language mapping by applying 
a Boolean algebra over the space of concepts

This reduces concept selection to a set cover problem over state regions

Disjunctive normal form (DNF) formulae enable coverage over arbitrary 
geometric state space regions via intersections and unions of concepts

Templates provide a mapping from DNF à natural language



Query Response Process

When do 
you inspect 
the gear?

Find states where 
action {inspect(gear)} 
is most likely action

Detected_gear /\ at(conveyor_belt) 

Find concept mapping 
that covers the 
indicated states

Convert to natural language

I’ll inspect the gear 
when I’ve detected 

a gear and I’m at 
the conveyor belt.

Detected_gear
at(conveyor_belt) 



Explainable Models are not Enough

Reasonable question:
“Why didn’t you inspect the gear?”

Reasonable answer:
“My camera didn’t see a gear. I inspect 
the gear when it is less than 0.3m 
from the conveyor belt center and it 
has been placed by the gantry.”

Fault Diagnosis

Policy Explanation

Root Cause Analysis

“My camera didn’t see a gear. I inspect 
the gear when it is less than 0.3m 
from the conveyor belt center and it 
has been placed by the gantry.”

Interpretability and comprehensibility enable explanations,  
but do not yield explanations themselves!



Shaping Humans to Match Robot Expectations!

Shaping Robots to Match Human Expectations!



User Study



Realtime Color Sudoku:

Each player gets 3 rows to fill: 
near to far, right to left.

There are no turns: 
play whenever you’re ready

A really hard game for humans



Between-subjects experiment (n=26)

Justification:
Players about to make a
mistake were told about the
reward inferred they were
missing.

Control:
Players about to make a
mistake were told that they
cannot make that move or
they’ll fail the game.

No Interruption:
Players completed the game
without mistakes.



Subjective Hypotheses
Subjective Hypotheses

H1: Participants will find the robot more helpful and useful 
when it explains why a failure may occur

H2: Participants will find the robot to be more intelligent 
when providing justification for its advice



H1: Participants will find the robot more helpful and useful 
when it explains why a failure may occur

Subjective Results: Helpfulness

p < 0.05 p < 0.05



Subjective Hypotheses
Subjective Hypotheses

H1: Participants will find the robot more helpful and useful 
when it explains why a failure may occur

H2: Participants will find the robot to be more intelligent 
when providing justification for its advice



Subjective Hypotheses
Objective Hypothesis

H1: Participants will complete the game faster when provided with justification

But we couldn’t test it.

Because most participants didn’t even listen to the control condition’s advice 
without justification.

Justification: 80%
Control: 20%

Game Completion Rate:



Collaborative Artificial Intelligence and Robotics Lab
Prof. Brad Hayes
Bradley.Hayes@Colorado.edu
http://www.cairo-lab.com/

http://www.circadence.com/

@hayesbh

http://bradhayes.info

Explainable AI for Establishing Shared Expectations 
During Human-Robot Collaboration

http://www.cairo-lab.com/
http://www.circadence.com/

