

APPLIED INTELLIGENCE

Opportunities and Challenges when Building AI for Autonomous Flight

AMLD EPFL - 28 January 2020

David Haber @davhab - dh@ddln.ai

No autonomy without AI.

And even today, AI can deliver substantial value to **increase situational awareness** in piloted operations.

We cannot compromise safety!

10⁻⁹

Your system cannot fail in 10⁹ flight hours (on average).

 \wedge

Generalization Bounds

with high probability
$$> 1 - \delta$$
:
"Probably" $|E_{out} - E_{in}(data)| < \varepsilon(\delta, \#data, ...)$
"Approximately Correct"

	Learning algorithm ${\cal F}$	
Data ${\cal X}$	Independent	Dependent
Independent	VC-dimension	
Dependent	Rademacher complexity	PAC-Bayesian bounds

First Step

Identify input probability space \mathcal{X} :

"All 512 x 512 RGB images you could possibly ever record over Switzerland"

Easy to talk about, hard to describe mathematically.

Hausen Airport (LSZN), Switzerland

Explicit Operating Parameters

$$OS = P_1 \times \cdots \times P_n$$

 $\varphi : X \to OS, \quad x \mapsto (\varphi_1(x), \dots, \varphi_n(x))$

 φ_1 = angle of approach in $P_1 = [0, 90]$ φ_2 = time of day in $P_2 = [6, 21]$ φ_3 = speed in $P_3 = [60, 90]$ $\varphi_4 = \dots$

Data Distribution

Show D_{train} , D_{val} , D_{test} are independently distributed in the operating space OS.

...not enough!

Show D_{train} , D_{val} , D_{test} are independently sampled from the input space \mathcal{X} and independent from each other.

Build an input distribution discriminator $\mathcal{D}: \sqcup_{n\geq 1}\mathcal{X}^n \to [0,1]$

"Concepts of Design Assurance for Neural Networks"

Propose a first set of **guidelines** for NN-based systems facilitating **backward & future compatibility** with the existing regulatory framework.

A whitepaper will be released soon.

Our Team

Strong software/aerospace pedigree:

- Computer Vision, Machine Learning, Robotics, Control
- Experience with safety critical software development Aviation experience:
 - Multiple PPL(H)s
 - Multiple PPL(A)s
 - Gliding License

Focus on regulatory approval:

- Dedicated regulatory compliance team
- Aviation certification specialist on advisory board

We are based in Zürich

Get in touch: dh@ddln.ai