AIRBUS Deep Learning Anomaly Detection

Sergei Bobrovskyi

AMLD / EPFL Lausanne/ 28.01.2020

The coming age

Unified data ecosystem.

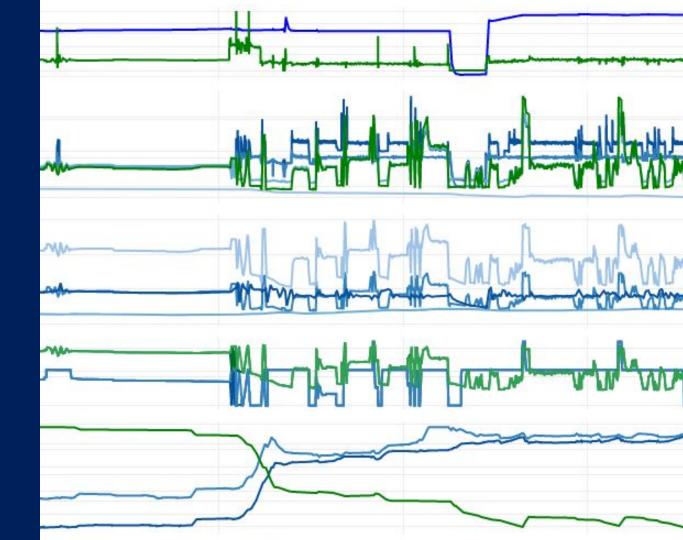
Connected Aircraft 24,000 Parameters 100% available data

Operational Environment Data In-Service Data Industrial Data Supply Chain Data

skywise.

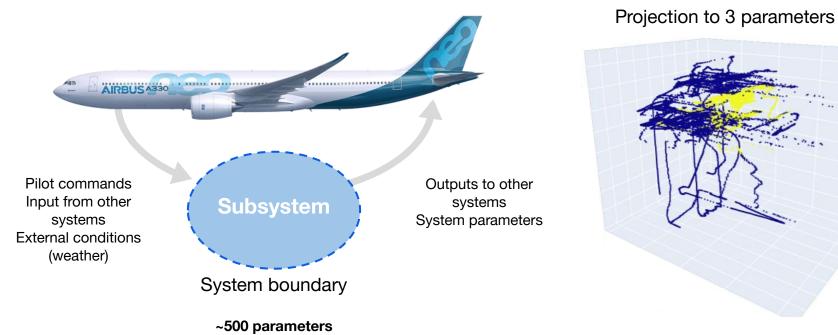
Time Series

The beating heart of an airplane



Challenge

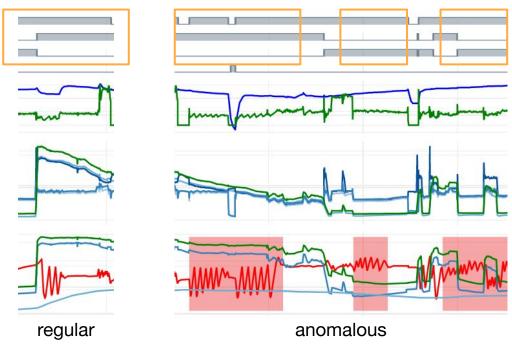
Open Dynamical Systems



Opportunity

Anomaly Detection

Anomalies: Patterns in data not conforming to expected behaviour

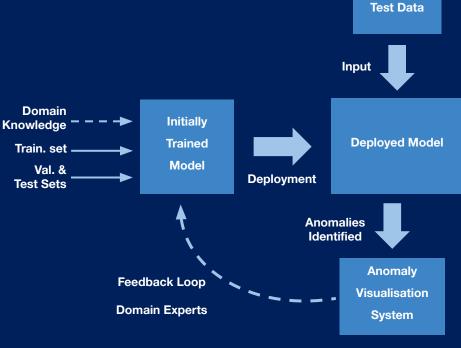


Rules find severe anomalies

Challenge: small, context-dependent deviations

Industrial solution

Semi-supervised human-level performance on time series from industrial assets



New Flight

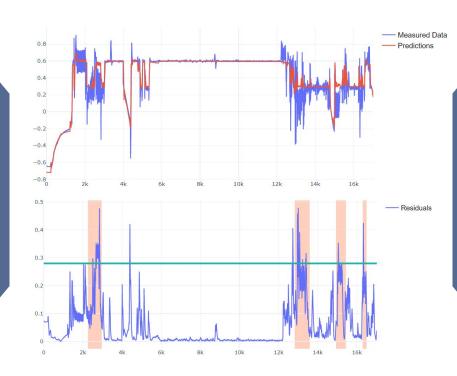
State of the art

Deep Learning Approaches

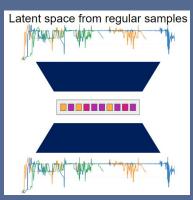
Predictive Future from regular samples

LSTM Malhotra et al. 2015 Hundman et al. 2018 CNN Munir et al. 2018

AIRBUS



Reconstructive



Autoencoder

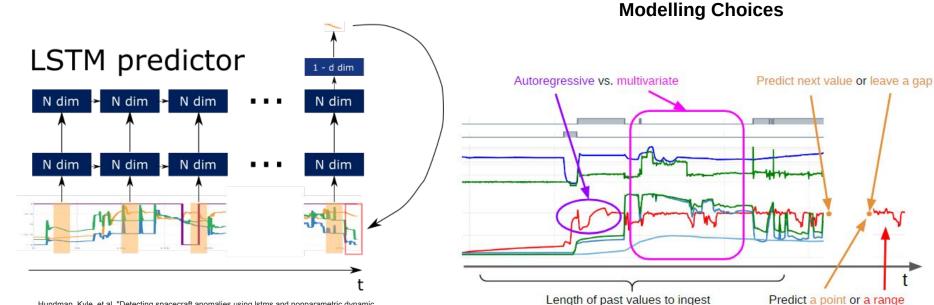
Hawkins et al. 2002 Malhotra et al. 2016 (LSTM) Su et al. 2019 (stochastic RNN)

GAN

Schlegl et al. 2017 Li et al. 2019

Solution

Airbus approach

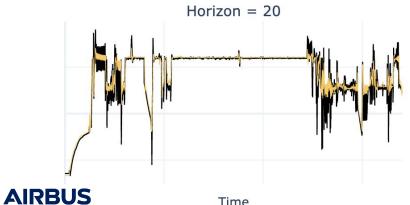


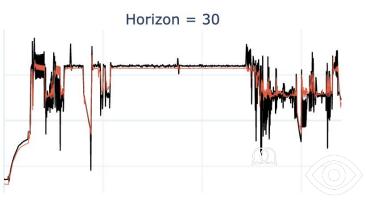
Horizon

Hundman, Kyle, et al. "Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding." *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. ACM, 2018.

Solution

Model Development



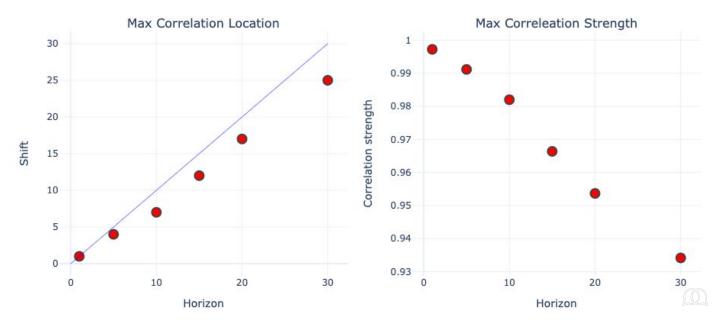


Time

Time

Solution

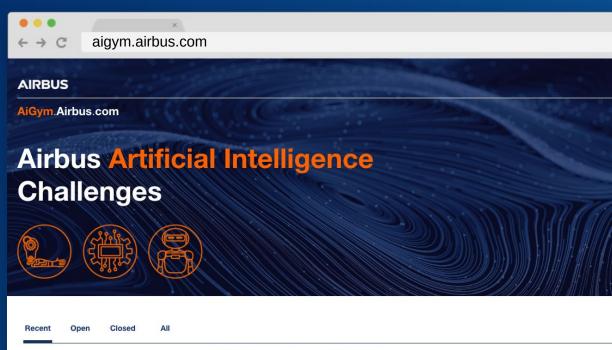
Model Development

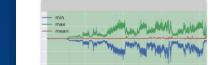


Co-Innovation

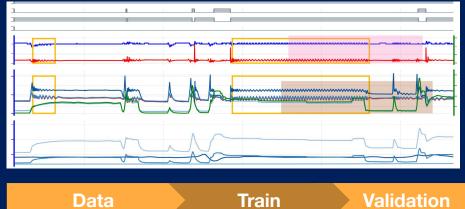
AI Gym

Collaborate with the most innovative companies at massive scale.





Time Series Challenge



Unlabeled data	645 ground tests 355 flights	32 ground tests 18 flights
81 context parameters 8 parameters of interest	17 anomalies detected by community	79 anomalies labeled by engineers

Challenge results

Hard problem ...

Team	F Score	Precision	Recall	Rank
Datapred	0.51	0.53	0.50	1
Industrial team 1	0.36	0.36	0.36	2
Industrial team 2	0.30	0.30	0.30	3
Industrial team 3	0.06	0.06	0.06	4
Industrial team 4	0.04	0.06	0.04	5
Academic team 1	0.02	0.06	0.02	6
Individual team 1	0.02	0.02	0.02	7
Individual team 2	0.00	0.00	0.00	8

- modeling engine for continuous intelligence
- ability to combine machine learning with other types of models in real time
- faster garage-to-factory cycle

Next steps

Mature infrastructure

Production level infrastructure

Engineering input

(+)

Co-development with engineering end-users

Al for Time Series

Optimised performance of algorithms

Industrial Anomaly Detection Service

Software suite including visualisation tool for 1 aircraft subsystem developed in a short cycle in collaboration with Datapred

References

Malhotra, Pankaj, et al. "Long short term memory networks for anomaly detection in time series." Proceedings. Presses universitaires de Louvain, 2015.

Hundman, Kyle, et al. "Detecting spacecraft anomalies using Istms and nonparametric dynamic thresholding." *Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*. ACM, 2018.

Munir, Mohsin, et al. "Deepant: A deep learning approach for unsupervised anomaly detection in time series." IEEE Access 7 (2018): 1991-2005.

Hawkins, Simon, et al. "Outlier detection using replicator neural networks." International Conference on Data Warehousing and Knowledge Discovery. Springer, Berlin, Heidelberg, 2002.

Malhotra, Pankaj, et al. "LSTM-based encoder-decoder for multi-sensor anomaly detection." arXiv preprint arXiv:1607.00148 (2016).

Ya Su, et al. "Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network", Accepted for KDD 2019, 2019

Schlegl, Thomas, et al. "Unsupervised anomaly detection with generative adversarial networks to guide marker discovery." International Conference on Information Processing in Medical Imaging. Springer, Cham, 2017.

Li, Dan, et al. "MAD-GAN: Multivariate anomaly detection for time series data with generative adversarial networks." arXiv preprint arXiv:1901.04997 (2019).