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Application: Financial systems
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*Image copied from: Li, Xiaoxiao, Joao Saude, Prashant Reddy, and Manuela Veloso. n.d. “Classifying and Understanding Financial Data Using
Graph Neural Network.”
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Explanation for Graph Neural Networks (GNNSs)

= subgraph from the computation graph, with subset of node features.
= mask on nodes/edges/node features
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*Image copied from: Yuan, Hao, Haiyang Yu, Shurui Gui, and Shuiwang Ji. 2020. “Explainability in Graph Neural Networks: A Taxonomic Survey.”
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‘axonomy of explanations
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Intrinsic explanation: model/algo structure already understandable, analyse inner

workings of the model

For: linear regression, GLMs, decision trees

Post-hoc explanation: does not presume any knowledge of the model structure

For: neural networks

Model-aware: look inside the
model, to analyse where the model
puts its attention

gradient/feature-based methods,
decomposition methods

Model-agnostic: model is a
black-box, only study changes in the
output when perturbing the input

perturbation-based methods,
counterfactual explanations,
surrogate models

Kenza AMARA



AMLD 2022 28 March 2022

Categories of explainers (23)

Model-aware methods Model-agnostic methods

Surrogate methods

Direct-masking procedures

Gradient/features-based e GraphLIME
methods e GNNExplainer e RelEx
e PGEXxplainer, GraphMask, e PGM-Explainer
e SA IG, Guided BP Refine
e CAM, Grad-CAM e Gem

Counterfactual methods

e CF-Explainer

oy e STEEX
Decomposition-based methods Srerenhrcea hare e
0 B2 Cenireing (2 e Causal Screening, ZORRO i -
e LRP, GNN-LRP s SuboranhX 9, Iterative RL-based methods
e XGNN

e RG-Explainer
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How to explain a GNN?
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-

Prior to explanation

~

Y

AN

Focus Phenomenon GNN model
Nature Soft Hard
Transformation Sparsity Threshold Top K
Posterior to explanation
Type Causal Counterfactual Characterization
Properties Characterization Score
Selective Confident Discriminative Time Consistency

k
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Protocol

(1) GNN Training

*- — = —| Groundtruth Yy

Input graph —» GNN I »  Prediction ¢

(4) Evaluation

?
Inputgraph —» GNN > Yy = Yy

(2) Mask generation | _ :
algorithm Objective function

!

I
I
I
I
Subgraph  ——» GNN —> 9

.

[ (3) Mask transformation ]

Y

Explanaton —» GNN - 'j] -
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What type of explanation?

Causal explanation:
sufficient but not necessary
Fidelity- — 0

Counterfactual explanation:
necessary but not sufficient

Fidelity+ — 1
e Characterisation:
necessary AND sufficient
Fidelity+ — 1 & Fidelity- — 0
Characterization power
. s rob o 4., prob
Charapt = 2 X Fidelity +P"°° x(1 — Fidelity—r"°%)

Fidelity +Pr°b +(1 — Fidelity—prob)
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Counterfactual

> fidelity+
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CiteSeer

Cora

Facebook

PubMed

Dﬁ/pe of explanations: Causal, counterfactual, characterization
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Comparative Framework of Explainability Methods

Time Characterization power Selective Discriminative Confident Ranking ability
Methods Soft Hard
Random —_ — — — -
Distance - — — o
PageRank — - —_
Saliency - =
Integrated Gradient — —
GradCAM - =
Occlusion -
GNNExplainer (E) - - = =
GNNEXxplainer (E+NF) - - =

PGMExplainer —_ -
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Thank you for your attention

Questions?
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