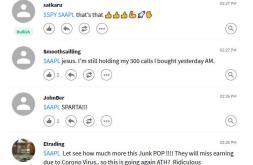
StockTwits Sentiment Classification and Stock Returns

M.-A. Divernois, D. Filipović

EPFL & Swiss Finance Institute https://github.com/marcaureledivernois

November 19, 2021

Summary


Idea

Analyze predictive power of social media for stock markets

- Collect & classify 90 million messages from StockTwits from 2009 to 2020
- Build firm-specific daily sentiment measure (polarity)
- Test predictive power of polarity on stock returns in general and around events

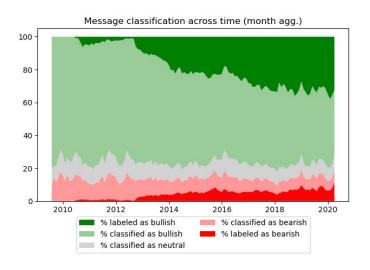
Keywords: NLP, Social Media, Investor sentiment, Event study

Message items

- Ticker symbol
- Timestamp
- Text message (body)
- Sentiment label (bearish / bullish / none)
- Others (32 in total)

a

Sentiment classification


• Run a logistic regression of the sentiment labels on the TFIDF features of user-labeled messages. Gives a score

$$TFIDF \mapsto s(TFIDF) = \text{prob} [\text{sentiment} = \text{bullish} \mid TFIDF]$$

- ② Run two binary classifications based on this score $s(\cdot)$ on user-labeled messages: the first (second) classifier sets bullish (bearish) as positive class and non-bullish (non-bearish) as negative class.
- Every message m is then mapped on either

```
m \mapsto egin{cases} & & & & & & =: bearish \\ & & & & & & & =: bearish \\ & & & & & & =: neutral \\ & & & & & & =: neutral \\ & & & & & & =: neutral \\ & & & & & & =: bullish \end{cases}
```

Sentiment-classified messages

Polarity

Build a daily aggregate sentiment measure for every firm and the market:

Polarity

Polarity of firm i on day t

$$P_{i,t} = \frac{\# \text{ bullish} - \# \text{ bearish}}{\# \text{ bullish} + \# \text{ bearish}} = \frac{\sum_{j=1}^{M_i^{(t)}} (\mathbf{1}_{C_{i,j}^{(t)}=1} - \mathbf{1}_{C_{i,j}^{(t)}=-1})}{\sum_{j=1}^{M_i^{(t)}} (\mathbf{1}_{C_{i,j}^{(t)}=1} + \mathbf{1}_{C_{i,j}^{(t)}=-1})}.$$

Market polarity on day t

$$P_t^M = \text{weighted average} = \frac{\sum_i M_i^{(t)} \cdot P_{i,t}}{\sum_i M_i^{(t)}}.$$

Can polarity predict next day returns?

$$R_{i,t} = \alpha + \beta \cdot P_{i,t} + \epsilon_{i,t}$$

$$R_{i,t+1} = \alpha + \beta \cdot P_{i,t} + \epsilon_{i,t}$$

	$R_{i,t}$	$R_{i,t+1}$
Constant	-0.0047***	-0.0002
	(0.000)	(0.000)
$P_{i,t}$	0.009***	0.0003
	(0.000)	(0.000)
R^2	0.012	0.000
No. Obs.	34100	34100

- Polarity is positively associated with contemporaneous returns
- Polarity has no predictive power on next day stock returns in general

Firm events - AAPL

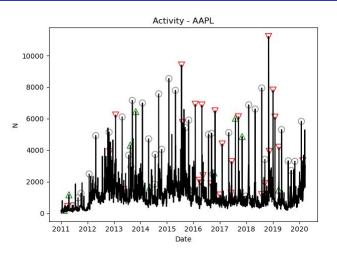
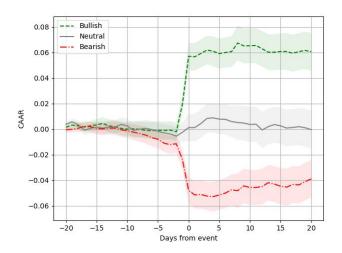
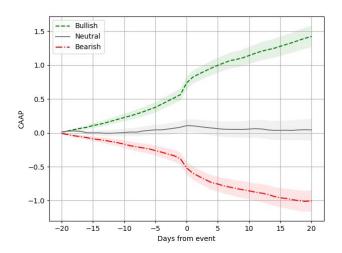




Figure: Daily volume of messages for Apple. Events are days with an unusual high volume of messages (total 1131). Green upper-triangles show bullish events, gray circles are neutral events and red down-triangles represent bearish events.

Cumulative returns around firm events

Cumulative polarity around firm events

Wrap-up

- We extract a daily sentiment measure (polarity) for firms from StockTwits
- Polarity is positively associated with contemporaneous stock returns, but this result loses its significance against next-day returns.
- Around firm events, abnormal polarity has significant predictive power on the type of the event, as opposed to abnormal returns.
- Application: Conditioning on (or knowing) an event will happen in the near future (e.g., earnings announcement), portfolio and risk managers can get an idea of the direction of the market.