Deep Learning Bise Wind Prediction at ZRH airport

Pawel Kampczyk, PhD

AMLD 2022

Austrian 🗡 😪 Lufthansa 🔏 SWISS

LUFTHANSA GROUP

lufthansagroup.com

Contents

POC Success Criteria

Bise Problem Statement

Approach

Results

Next Steps

Bise POC Success Criteria

First ML Model

First ML model for Bise created

Outperform existing Approaches

ML model to beat heuristics in precision, recall, f1 score

Extend Model Timeframe

Extend model to 6h horizon + beat heuristics

Make it easy with Technology

Evaluate new VertexAl time series technology

Contents

POC Success Criteria

Bise Problem Statement

- What is Bise?
- Different Forecasting Approaches

What is **BISE**?

- Cold, mostly dry wind from the north-east to south-west
- Canalization through the Alps and the Jura Mountains towards the west
- Summer: good weather
- Winter: high fog, strong haze
- Strongest at Lake Geneva: Wind speed: avg. 60 km/h, Gust peak: >100 km/h
 30% decrease of the ZRH airport capacity for landings & take-offs

What does this mean for the ZRH airport?

30% decrease in the ZRH airport capacity Potential delays - on departure and arrival

Nordanflugkonzept		Ostanflugkor	nzept	Südanflugkonzept			
Landungen vo Richtung Wes Bise Richtung	on Norden, Starts sten und Süden, bei 9 Osten	Landungen vo Richtung Nord	on Osten, Starts den	Landungen von Süden, Starts Richtung Norden und Westen			
Landungen: Starts:	Piste 14 und 16 Piste 28 und 16 Piste 10 (Bise)	Landungen: Starts:	Piste 28 Piste 32 und 34	Landungen: Starts:	Piste 34 Piste 32, 34 teilweise Piste 28		
14		32 34		32 34			
28 🔶 -]	28	28 🔫	\mathcal{T}		
	16				34		
Generelle An	wendung: 1:00 Ubr. Mo Er	Generelle An	wendung: 3:30 Ubr. Mo - Er	Generelle Anv	vendung:		
 09:00 - 2 baden-with Feiertage 	0:00 Uhr Sa und So, ürttembergische	20:00 - 23 baden-wü Feiertage	3:30 Uhr Sa und So, arttembergische	06:00 - 09 baden-wü Feiertage	:00 Uhr Sa und So, ttembergische		
 bei Biswir abends 	nd auch morgens und	→ bei Westv	wind auch tagsüber	 abends, w möglich si Sicht etc.) 	enn Ostanflüge nicht nd (Bise, schlechte oder tagsüber wenn		

Forecasting Approaches

- 1. Numerical weather forecasting
 - Global optimization
 - Run every couple of hours + time to compute
 - Lead time in days

Forecasting Approaches

- 1. Numerical weather forecasting
 - Global optimization
 - Run every couple of hours + time to compute
 - Lead time in days

2. ML time series prediction

- Focus on local optimization (ZRH airport)
- Semi-instant forecast (only initial training of the model takes hours)
- Lead time in hours

Contents

Weather Data

Weather Data

Current prediction based on pressure difference between two points (from MeteoSwiss simulation)

Idea for the future implementation: Utilize information from actual measurements to create more granular prediction with a model based on historical data.

Project idea: Create a machine learning system to predict Bise wind in ZRH

Inputs

Meteorological data

- Wind:
 - Direction
 - Strength
 - Gusts
- Pressure (3 different fields)
- Temperature
- Humidity

5 years of data, 10 min resolution

Station location data (~150)

- Name
- Position (2 / 4 fields)
- Altitude
- Available measured parameters

Statistics

- High impact, but a rare event imbalanced sample.
- Depending on the selection criteria for the Bise, it can be in range of 0.6% to 3.2%.

Bise according to >10knots headwind on runway 10

windSpeedDir100gt5.15

Null	129
False	261,194
True	1,478

Bise according to >10knots headwind gust on runway 10

129
254,284
8,388

What can we predict?

Next time steps – wind / wind gust values along runway or binary classification

What can we predict?

Event duration

Contents

POC Success Criteria

Bise Problem Statement

Approach

Results

2 hour window

6 hour window

Next Steps

Results - F1 Score 2 hrs

Precision answers " out of all the times gives bise how often is it actually a Bise?". Since Precision/recall are inversely correlated trade-offs: F1 score is the harmonic mean of precision and recall

- Predicting Bise with ML is possible
- Good overall precision and recall
- The longer the time scale, the bigger advantage of DL models over baseline

Results - 6 hours

- Extension beyond 2 hours works, strong performance at 3h
- The longer the time scale, the bigger advantage of DL models over baseline

Model Learning Wind Movements - 2 hrs in advance

Behind the Scenes:

- Model uses Wind prediction to determine Bise
- Wind direction predicted 90%+ of times two hrs ahead

POC Success Criteria

First ML Model

First ML model for Bise created

Outperform existing Approaches

ML model to beat heuristics in precision, recall, f1 score

Extend Model Timeframe

Extend model to 6h horizon + beat heuristics

New Technology

Evaluate new VertexAl time series technology

Contents

Next Steps

2

3

Productionalization [from POC to MVP]

Possible implementation as a dashboard for operators

Usability / user acceptance needs to be assessed

Approach scalable to other time series problems

Thank you very much for your attention

lufthansagroup.com

Austrian 🗡 😪 Lufthansa 🕂 SWISS

LUFTHANSA GROUP

lufthansagroup.com

Austrian 🗡 😪 Lufthansa 🖉 SWISS

LUFTHANSA GROUP

Bise - 16.01.2017 10:00:00

Data – legend files

Parameter

Einheit Beschreibung dkl010z0 ° Windrichtung; Zehnminutenmittel fkl010z0 m/s Windgeschwindigkeit skalar; Zehnminutenmittel fkl010z1 m/s Böenspitze (Sekundenböe); Maximum pp0qffs0 hPa Luftdruck reduziert auf Meeresniveau (QFF); Momentanwert ppOqnhs0 hPa Luftdruck reduziert auf Meeresniveau mit Standardatmosphäre (QNH); Momentanwert prestas0 hPa Luftdruck auf Stationshöhe (QFE); Momentanwert tre200s0 °C Lufttemperatur 2 m über Boden; Momentanwert ure200s0 % Relative Luftfeuchtigkeit 2 m über Boden; Momentanwert

Data – legend files

Stationen

stn	Name	Parameter D	atenquelle	Länge/Breite	Koordinaten [km] Höhe ü. M. [m]
VIO	Vicosoprano	dkl010z0	MeteoSchweiz	9°38'/46°21	768485/135866 1089
VIO	Vicosoprano	fkl010z0	MeteoSchweiz	9°38'/46°21'	768485/135866 1089
VIO	Vicosoprano	fkl010z1	MeteoSchweiz	9°38'/46°21'	768485/135866 1089
VIO	Vicosoprano	pp0qnhs0	MeteoSchweiz	9°38'/46°21	l' 768485/135866 1089
VIO	Vicosoprano	prestas0	MeteoSchweiz	9°38'/46°21'	768485/135866 1089
VIO	Vicosoprano	tre200s0	MeteoSchweiz	9°38'/46°21'	768485/135866 1089
VIO	Vicosoprano	ure200s0	MeteoSchweiz	9°38'/46°21	' 768485/135866 1089
VIO	Vicosoprano	pp0qffs0	MeteoSchweiz	9°38'/46°21'	768485/135866 1089
VLS	Vals	dkl010z0 Me	teoSchweiz	9°11'/46°38'	734016/165551 1242
VLS	Vals	fkl010z0 Met	eoSchweiz	9°11'/46°38'	734016/165551 1242
VLS	Vals	fkl010z1 Met	eoSchweiz	9°11'/46°38'	734016/165551 1242
VLS	Vals	pp0qnhs0 un	known	9°11'/46°38'	734016/165551 1242
VLS	Vals	prestas0 unk	nown	9°11'/46°38'	734016/165551 1242
VLS	Vals	tre200s0 Me	teoSchweiz	9°11'/46°38'	734016/165551 1242
VLS	Vals	ure200s0 Me	teoSchweiz	9°11'/46°38'	734016/165551 1242
VLS	Vals	pp0qffs0 unk	nown	9°11'/46°38'	734016/165551 1242

Data

							Paramete	er / Date	enquelle						
	dkl010z0 fkl010z0 fkl010z1		pp0q	p0qffs0 pp0qnhs0				prestas0			tre200s0		ure200s0		
Stn	MeteoSchweiz	MeteoSchweiz	MeteoSchweiz	MeteoSchweiz	unknown	MeteoSchweiz	Schweizerische Rettungsflugwach	unknown	MeteoSchweiz	Schweizerische Rettungsflugwach	unknown	MeteoSchweiz	unknown	MeteoSchweiz	unknown
ABO AEG AIG ALT AND ANT ARH ARO ATT	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	1 1 1 1 1 1 1		1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1		• 1	 1 Date Para Stn: Cour 	1 enquelle meter: nt of Str	 1 Meteos tre200 AIG 1 	■ 1 Schweiz s0
BAS BEH BER BEZ BIA BIE BIN BIV	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	 1 1 1 1 	 1 1 1 1 		1 1 1 1 1	1	1 1 1 1 1 1 1		1 1	1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1	

Project proposal

Es wird diskutiert wie man von der Meteoprognose zu einem Entscheid kommt, der dann das DCB Verfahren auslöst. Aus Sicht von Eugen Müller stellt heute das TAF, welches auf einem deterministischen Modell basiert, das am besten geeignete Produkt dar. In Zukunft könnte man auch Prognosen auf Basis von Ensamble Modellen verwenden, die dann auch Eintretenswahrscheinlichkeiten berechnen können. Das TAF wird alle 3h aktualisiert und umfasst einen Prognosezeitraum von 30h. Zum Zeitpunkt der Nachmittagstelefonkonferenz hätte man somit eine Prognose für die Betriebszeit des nächsten Tages. Anhand der TAF Daten würde man dann die Wahrscheinlichkeit, dass das Runway Konzept Bise zur Anwendung kommt ableiten und in Kategorien einteilen.

Beispiel:

Time	0600	0700	0800	0900	1000	1100	1200	1300	1400	1500
Bise Risk										
Bise Key		NIL		Low		Medium		High		Very High

Mit «Bise Risk» ist in dem Zusammenhang das Runway Konzept gemeint.

Die Einteilung in die Gruppen würde auf Basis der TAF Windinformation und der daraus abgeleiteten Rückenwindkomponente für RWY 28 erfolgen. Am Meeting wurde sich initial auf folgende Einteilung verständigt.

- Very High: TWC RWY 28 ≥ 12kt
- High: TWC RWY 28 ≥ 8kt
- Medium: TWC RWY 28 ≥ 4kt
- Low: TWC RWY 28 ≥ 0kt
- NIL: TWC RWY 28 < 0kt

Der DCB Bisenprozess würde dann ausgelöst werden, wenn zum Beispiel das Risiko für Bisenkonzept High oder

LUFTHANSA GROUP

Results - Recall 2 hrs

Recall is the number of correct results divided by the number of results that should have been returned.

"What %age of the actual bise periods did were caught?"

$$\begin{aligned} \text{Precision} &= \frac{tp}{tp+fp} \\ \text{Recall} &= \frac{tp}{tp+fn} \end{aligned}$$

- Predicting Bise with ML is possible
- Good overall precision and recall (+10-11 points over heuristics on averagebetter for longer forecasts)
- The longer the time scale, the bigger advantage of DL models over baseline

Results - F1 Score

Precision answers "out of all the times gives bise how often is it actually a bise?". Since Precision/recall are inversely correlated trade-offs: F1 score is the harmonic mean of precision and recall

$$\begin{aligned} \text{Precision} &= \frac{tp}{tp+fp} \\ \text{Recall} &= \frac{tp}{tp+fn} \end{aligned}$$