

Michele Volpi

Swiss Data Science Center – ETHZ + EPFL

AMLD19, Lausanne

Semantic interpretation

 Assign semantic classes to "objects" in the image

 Semantic concepts more abstract than radiometric classes (human vs physical concept)

Semantic interpretation

- Why not just radiometric-based interpretation?
 - As resolution increases, smaller objects can be resolved
 - Semantics might not be directly derived from spectral signatures
- Semantic segmentation: Assign a semantic label to every single mapping unit (pixel, window, segment, etc.)

Semantic segmentation

- Main differences:
 - Discriminative spatial context vs discriminative "colors"
 - Spatial ordering vs unordered (iid)
 - Different scales vs resolution
 - •
- How to achieve this?
 - (Learning) spatial features
 - Graphical models (MRF, CRF)
 - Inject domain specific information

Semantic segmentation

- Main differences:
 - Discriminative spatial context vs discriminative "colors"
 - Spatial ordering vs unordered
 - Different scales vs resolution
 - •
- How to achieve this?
 - (Learning) spatial features
 - Graphical models (MRF, CRF)
 - Inject domain specific information

Wavelength

Longitude

Learning the context

Side information

What can we use to inform models?

- Additional priors related to the problem (e.g. spatial and geographic context)
- Additional inputs (e.g. DSM, time series, image features, ...)
- Additional outputs (e.g. object detection, semantic boundaries, ...)

[Kellenberger et al., IEEE IGARSS 2017]

Side information

What can we use to inform models?

- Additional priors related to the problem (e.g. spatial and geographic context)
- Additional inputs (e.g. DSM, time series, image features, ...)
- Additional outputs (e.g. object detection, semantic boundaries, ...)

[Kellenberger et al., IEEE IGARSS 2017]

- Injecting spatial context into a model:
 - Inputs: Spatial arrangement of patches of pixels (e.g. visual words)
 - Outputs: Interactions between classes (class co-occurrence: p(y_i,y_i))
 - Both: Model-based invariances (or equivariance, covariance)

e.g. [Marcos et al., ICCV 2017] for rotations

- Injecting spatial context into a model:
 - Inputs: Spatial arrangement of patches of pixels (e.g. visual words)
 - Outputs: Interactions between classes (class co-occurrence: p(y_i,y_i))
 - Both: Model-based invariances (or equivariance, covariance)

e.g. [Marcos et al., ICCV 2017] for rotations

- Injecting spatial context into a model:
 - Inputs: Spatial arrangement of patches of pixels (e.g. visual words)
 - Outputs: Interactions between classes (class co-occurrence: p(y_i,y_i))
 - Both: Model-based invariances (or equivariance, covariance)
 e.g. [Marcos et al., ICCV 2017] for rotations
- Closer things are (generally) more related than those far apart
 - Geographic context

- Injecting spatial context into a model:
 - Inputs: Spatial arrangement of patches of pixels (e.g. visual words)
 - Outputs: Interactions between classes (class co-occurrence: p(y_i,y_i))
 - Both: Model-based invariances (or equivariance, covariance)
 e.g. [Marcos et al., ICCV 2017] for rotations
- A rotation in the input should not affect the output

Distance to object

[Boeing, SSRN 2018]

Geo-context and spatial smoothness

- Spatial smoothness
 - Contrasts
- Locally invariant class co-occurrence
 - Geography

Learning the context

- Formulated as a structured output learning problem (over a CRF):
 - Learn mapping from inputs in isolations to class-likelihoods
 - Features locally describing the appearance
 - Learn optimal relationships between local outputs
 - Define a neighborhood system and learn relationships between classes
- Learned using Structured SVM
 [Tsochantaridis et al., JMLR 2005]

$$E(\mathbf{x}, \mathbf{y}; \mathbf{w}) =$$

$$\sum_{i\in\mathcal{V}}\varphi_i(y_i,x_i;\mathbf{w}^\varphi)$$

$$+ \sum_{(ij)\in\mathcal{E}} \phi_{ij}(y_i, y_j, x_i, x_j; \mathbf{w}^{\phi})$$

$$=\langle \mathbf{w}, \mathbf{\Phi}(\mathbf{x}, \mathbf{y}) \rangle$$

Learning the context

 "Unary" features standard appearance

$$E(\mathbf{x}, \mathbf{y}; \mathbf{w}) =$$

$$\sum_{I\in\mathcal{V}}\varphi_i(y_i,x_i;\mathbf{w}^\varphi)$$

- Dense "Pairwise"
 relationships within
 quantized spatial rings
 - Invariant to rotation
 - Flexible geographical relationships
 - Robust to little and nondense training data

$$+ \sum_{(ij)\in\mathcal{E}} \phi_{ij}(y_i, y_j, x_i, x_j; \mathbf{w}^{\phi})$$

$$=\langle \mathbf{w}, \mathbf{\Phi}(\mathbf{x}, \mathbf{y}) \rangle$$

1: Roads 2: Build. 3: Trees 4: Grass 5: Soil 6: Water 7: Rails 8: Pools

The learned context

Does the context help?

- Results improve, but still not optimal: why?
 - Lots of visual ambiguity between classes, linearity of relationships
- Enforces prior beliefs about the problem, very useful for small training data

 More data! More Learning! More weights! More nonlinearities!

Does the context help?

- Results improve, but still not optimal: why?
 - Lots of visual ambiguity between classes, linearity of relationships
- Enforces prior beliefs about the problem, very useful for small training data

 More data! More Learning! More weights! More nonlinearities!

[Campos-Taberner et al., IEEE JSTARS 2016]

Does the context help?

- Results improve, but still not optimal: why?
 - Lots of visual ambiguity between classes, linearity of relationships
- Enforces prior beliefs about the problem, very useful for small training data

 More data! More Learning! More weights! More nonlinearities!

[Rottensteiner et al., JISPRS SI 2014]

Side information

What can we use to inform models?

- Additional priors related to the problem (e.g. spatial and geographic context)
- Additional inputs (e.g. DSM, time series, image features, ...)
- Additional outputs (e.g. object detection, semantic boundaries, ...)

[Kellenberger et al., IEEE IGARSS 2017]

Side information

What can we use to inform models?

- Additional priors related to the problem (e.g. spatial and geographic context)
- Additional inputs (e.g. DSM, time series, image features, ...)
- Additional outputs (e.g. object detection, semantic boundaries, ...)

[Kellenberger et al., IEEE IGARSS 2017]

Multi-task segmentation

- Multi-task learning
 - Give same inputs, learn a model able to predict several outputs at the same time

- Jointly learn semantic segmentation and semantic edges
 - Related tasks, mutually informative [Marmanis et al., JISPRS 2018]

Multi-task learning

- Jointly learn semantic segmentation and semantic edges
 - Related tasks, mutually informative [Marmanis et al., JISPRS 2018]
- Learn a shared representation between two related tasks

$$\mathcal{L}(y, \hat{y}; x) = \beta_s \mathcal{L}^s(y_s, \hat{y}_s; x) + \beta_e \mathcal{L}^e(y_e, \hat{y}_e; x)$$

Segmentation loss Boundary loss

Multi-task learning

- Jointly learn semantic segmentation and boundaries
 - Related tasks, mutually informative [Marmanis et al., JISPRS 2018]
- Learn a shared representation between two related tasks

$$\mathcal{L}(y, \hat{y}; x) = \beta_s \mathcal{L}^s(y_s, \hat{y}_s; x) + \beta_e \mathcal{L}^e(y_e, \hat{y}_e; x)$$

Segmentation loss Boundary loss

 Tie parameters of a CNN (hypercolumns architecture)

Full segmentation pipeline

Full segmentation pipeline

OSDSC

"Side products"

Semantic boundaries

Co-occurrences (hierarchy)

(UCM)

All nice but...

- Models and data become increasingly complex:
 - No way to plug-and-reuse different pipeline parts
 - Full reproducibility does not rely only on source code availability
 - data updates, package versions, environment definition, dependencies, etc.
 - Same for collaboration

Relevant XKCD: xkcd.com/1987/

MY PYTHON ENVIRONMENT HAS BECOME SO DEGRADED THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

Try RENKU!

- SDSC contribution: RENKU 連句
 - Personalized environments in the cloud (docker)
 - Jointly version data, code, outputs and modularly relate them
 - Versions independent "runs"
 - Reuse, trace the use, allow full reproducibility
 - Open source

- -> datascience.ch/solutions
- -> renkulab.io

Summing up

- Prior knowledge helps for low data regimes
 - Expert and domain knowledge
- Additional data provides additional evidence as long as models can ingest it
 - Reusable information available
- Sharing is caring
 - Reproducible and reusable developments

- -> datascience.ch/solutions
- -> renkulab.io

carvingthroughdata.ch

Carving Through Data

A different introductory course to Machine Learning

11 -15 March, 2019 Laax, Switzerland

Materials Science and Technology

