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Semantic interpretation 

• Assign semantic classes to 
“objects” in the image

• Semantic concepts more 
abstract than radiometric 
classes (human vs physical 
concept)



Semantic interpretation

• Why not just radiometric-based 
interpretation? 
• As resolution increases, smaller objects can 

be resolved 
• Semantics might not be directly derived 

from spectral signatures

• Semantic segmentation: Assign a 
semantic label to every single 
mapping unit (pixel, window, 
segment, etc.)
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Semantic segmentation

• Main differences: 
• Discriminative spatial context vs 

discriminative “colors”
• Spatial ordering vs unordered (iid)
• Different scales vs resolution
• …

• How to achieve this? 
• (Learning) spatial features 
• Graphical models (MRF, CRF)
• Inject domain specific information
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Learning the context 

Learned semantic 
segmentation model



Side information

• What can we use to inform 
models?

• Additional priors related to the 
problem (e.g. spatial and geographic 
context)

• Additional inputs (e.g. DSM, time 
series, image features, …) 

• Additional outputs (e.g. object 
detection, semantic boundaries, …)

[Kellenberger et al., IEEE IGARSS 2017] 
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• Injecting spatial context into a 
model:
• Inputs: Spatial arrangement of 

patches of pixels (e.g. visual words)
• Outputs: Interactions between 

classes (class co-occurrence: p(yi,yj) ) 
• Both: Model-based invariances (or 

equivariance, covariance) 
e.g.  [Marcos et al., ICCV 2017] for rotations

Spatial context
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• Injecting spatial context into a 
model:
• Inputs: Spatial arrangement of 

patches of pixels (e.g. visual words)
• Outputs: Interactions between 

classes (class co-occurrence: p(yi,yj) ) 
• Both: Model-based invariances (or 

equivariance, covariance) 
e.g.  [Marcos et al., ICCV 2017] for rotations

• Closer things are (generally) more 
related than those far apart
• Geographic context

Spatial context
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• Injecting spatial context into a 
model:
• Inputs: Spatial arrangement of 

patches of pixels (e.g. visual words)
• Outputs: Interactions between 

classes (class co-occurrence: p(yi,yj) ) 
• Both: Model-based invariances (or 

equivariance, covariance) 
e.g.  [Marcos et al., ICCV 2017] for rotations

• A rotation in the input should not 
affect the output

Spatial context
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[Boeing, SSRN 2018]

Road network analysis



Geo-context and spatial smoothness
[Volpi and Ferrari, CVPRW 2015]

Orlando, US Hwanggeum-dong, South Korea Illinois, US

Edinburgh, Scotland Lugano, Switzerland

• Spatial smoothness
• Contrasts

• Locally invariant 
class co-occurrence
• Geography 



• Formulated as a structured output 
learning problem (over a CRF): 

• Learn mapping from inputs in 
isolations to class-likelihoods
• Features locally describing the 

appearance
• Learn optimal relationships between 

local outputs
• Define a neighborhood system and learn 

relationships between classes

• Learned using Structured SVM 
[Tsochantaridis et al., JMLR 2005]

Learning the context 
[Volpi and Ferrari, CVPRW 2015]



Learning the context 
[Volpi and Ferrari, CVPRW 2015]

• “Unary” features standard 
appearance 

• Dense “Pairwise” 
relationships within 
quantized spatial rings
• Invariant to rotation
• Flexible geographical 

relationships
• Robust to little and non-

dense training data



The learned context 
[Volpi and Ferrari, CVPRW 2015]
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The learned context 
[Volpi and Ferrari, CVPRW 2015]

Potts Model 1-40m Joint learningLinear SVMInput data



Does the context help?

• Results improve, but still not 
optimal: why? 
• Lots of visual ambiguity between 

classes, linearity of relationships

• Enforces prior beliefs about the 
problem, very useful for small 
training data

• More data! More Learning! More 
weights! More nonlinearities!  
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• Results improve, but still not 
optimal: why? 
• Lots of visual ambiguity between 

classes, linearity of relationships

• Enforces prior beliefs about the 
problem, very useful for small 
training data
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weights! More nonlinearities!  

[Rottensteiner et al., JISPRS SI 2014] 



Side information

[Kellenberger et al., IEEE IGARSS 2017] 
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Multi-task segmentation

• Multi-task learning
• Give same inputs, learn a model able 

to predict several outputs at the 
same time 

• Jointly learn semantic 
segmentation and semantic edges
• Related tasks, mutually informative 

[Marmanis et al., JISPRS 2018]

deep learning

[Volpi and Tuia, JISPRS 2018]
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• Learn a shared representation 
between two related tasks deep learning

Segmentation loss Boundary loss

[Volpi and Tuia, JISPRS 2018]



Multi-task learning 

• Jointly learn semantic 
segmentation and boundaries
• Related tasks, mutually informative 

[Marmanis et al., JISPRS 2018]

• Learn a shared representation 
between two related tasks

• Tie parameters of a CNN 
(hypercolumns architecture) Segmentation Boundaries

Segmentation loss Boundary loss

[Volpi and Tuia, JISPRS 2018]



Full segmentation pipeline
[Volpi and Tuia, JISPRS 2018]



Full segmentation pipeline

Full pipeline
Only CNN
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“Side products”

Co-occurrences
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• Models and data become 
increasingly complex:

• No way to plug-and-reuse different 
pipeline parts

• Full reproducibility does not rely 
only on source code availability
• data updates, package versions, 

environment definition, 
dependencies, etc.

• Same for collaboration

All nice but…

Relevant XKCD: xkcd.com/1987/ 



Try RENKU!

• SDSC contribution:

• Personalized environments in the 
cloud (docker)

• Jointly version data, code, outputs 
and modularly relate them

• Versions independent “runs”
• Reuse, trace the use, allow full 

reproducibility 
• Open source

-> datascience.ch/solutions
-> renkulab.io



Summing up

• Prior knowledge helps for low data 
regimes
• Expert and domain knowledge

• Additional data provides additional 
evidence as long as models can 
ingest it
• Reusable information available

• Sharing is caring
• Reproducible and reusable 

developments -> datascience.ch/solutions
-> renkulab.io





Eidg. Forschungsanstalt für Wald
Schnee und Landschaft WSL


