

Using machine learning to predict the evolution and propagation of delays

Ramon Dalmau-Codina EUROCONTROL

Outline

- 1. Air traffic flow management (ATFM) delay evolution
 - Introduction
 - Model
 - Experiment
 - Results
- 2. Delay propagation
 - Introduction
 - Model
 - Experiment
 - Results

Members of the team:

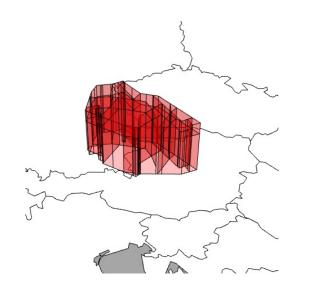
- Brice GENESTIER
- Camille ANORAUD
- Peter CHOROBA
- Darren SMITH

Members of the team:

- Giuseppe MURGESE
- Yves de WANDELER
- Ricardo CORREIA
- Alan MARSDEN

ATFM delay evolution - Introduction

- The airspace is divided in sectors
- Each sector has a given capacity (in entries per hour)
- When the demand exceeds the capacity, ATFM measures are applied to delay flights on ground and smooth the demand
- Flights are delayed in a *first-come-first-served* basis by CASA



Example: Regulation applied at LOVVW12 sector from 13:00 to 18:00 affected 62 flights and generated 348 min of delay

ATFM: Air Traffic Flow Management CASA: Computer Assisted Slot Allocation

ATFM delay evolution - Introduction

- Airlines only know the current ATFM delay
- The ATFM delay assigned to a flight may change with time
- The objective was to predict the evolution with machine learning

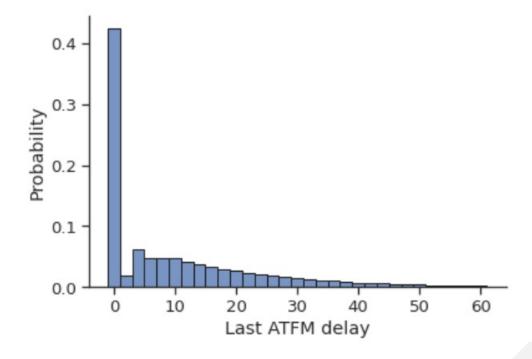
Fri 04 Mar TIME	ARCID:	RYR4FU EVENT	ADEP: STATE	EDDB EOBT	ADES:	EGCC AOBT	EOBT : TOBT	10:00 TSAT	A	Auto Refresh :	never \vee	⊻ GO	
									TAXI	DELAY			MPR
22:28:37	-11h36	IFP	FI	10:00					11				
04:28:36	-05h36	PTX	FI	10:00					11				
07:00:13	-03h04	EDI	FI	10:00					6				
08:00:15	-02h04	TDI	FI	10:00					6				
08:25:16	-01h39	SIT	SI	10:00	10:22				6	22			EDWMA04M

ATFM delay evolution - Model

- Two tasks
 - 1. Predict the trend (binary classification)
 - 2. Predict the last ATFM delay (*tweedie* regression)
- Two version:
 - 1. Recurrent Neural Network (RNN) sequence of *messages*
 - 2. Gradient Boosted Decision Trees (GBDT) single message
- One source of data
 - 1. Enhanced Tactical Flow Management System (ETFMS) flight data messages (EFD) collected by the Network Manager (NM) :
 - Departure and destination airports
 - Airline
 - List of ATFM regulations affecting the flight
 - Current ATFM delay (from CASA)
 - Estimated Off-Block Time (EOBT)

ATFM delay evolution - Model

- The last ATFM delay does not follow a Normal distribution
- The last ATFM delay follows a Poisson-Gamma distribution
- The regression models were trained to minimise the *tweedie* loss
- The classification models were trained to minimise the binary logloss



ATFM delay evolution - experiment

- April 2021: Assessment on the test set
 - The predictions of the model outperform the information that is available nowadays
- March 2021: Validation exercise in replay mode
 - Improvements were confirmed
 - Wish for further testing in live trial
- October 2021 Present: Live trial
 - The models are connected to the Network Manager's operational system
 - Airlines access the predictions from their operational control centres (OCCs)

VUeling AIRFRANCE / 🛞 🔂 transavia 🕂 SWISS (RYANAIR



CASA: A dummy model that always predicts the current ATFM delay

Low is better

4

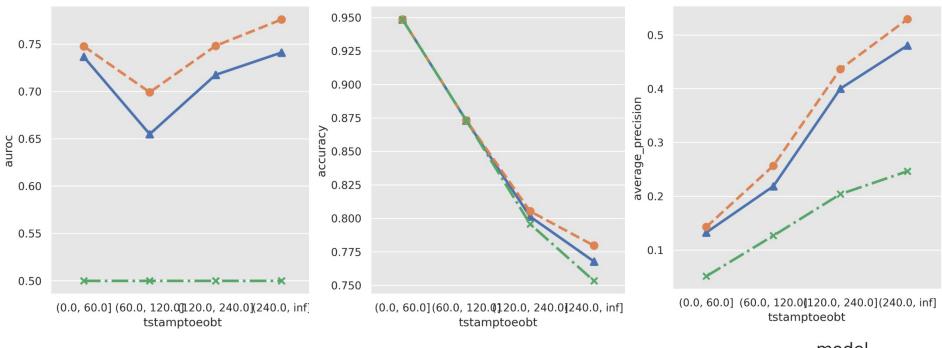
8

CASA

X

ATFM delay evolution - Results

High is better



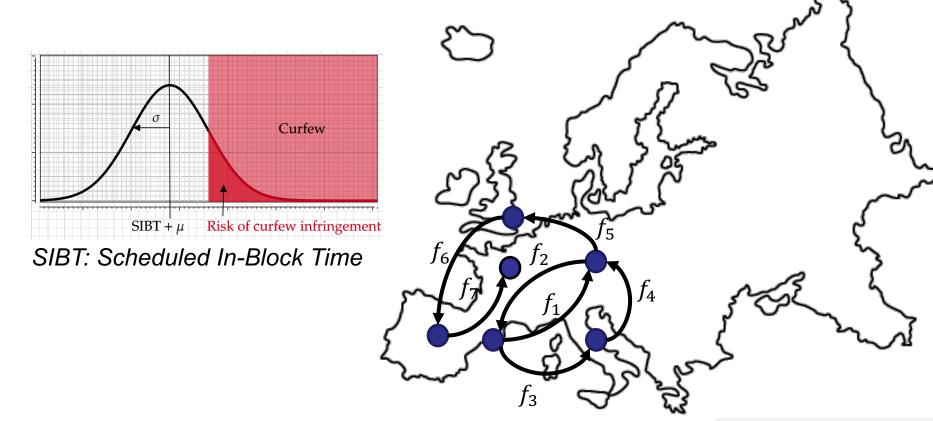
FADE-LGBM: Model that does not consider sequential information FADE-RNN: Model that considers sequential information CASA: A dummy model that always predicts False (delay stable)

model FADE-LGBM

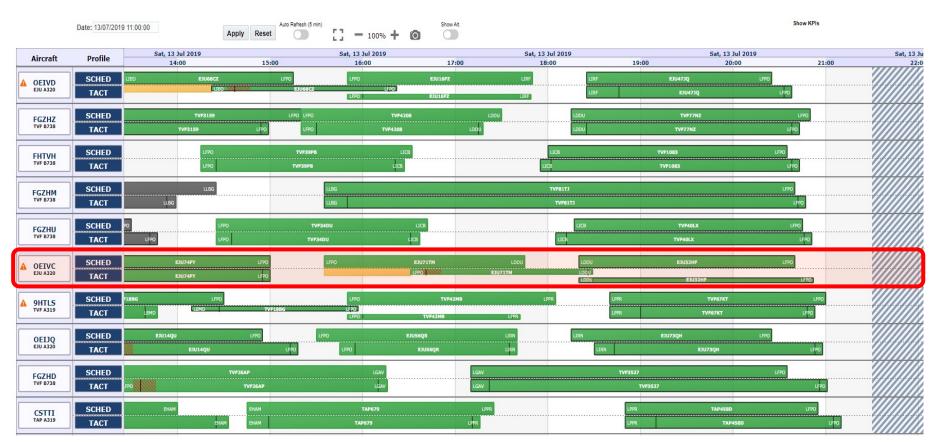
FADE-RNNCASA

Delay propagation - Introduction

- Night curfews are environmental restrictions applied at some airports
- Delay propagation may lead to a night curfew infringement
- High operational and economical cost

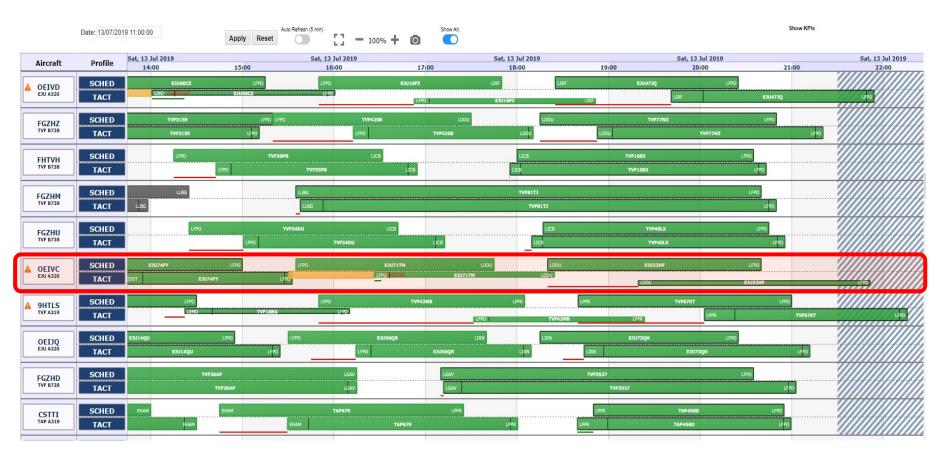


Delay propagation - Introduction



MIRROR HMI: TACT demand at 11:00utc for LFPO late evening arrivals on 13-07-2019 based on ETFMS (Enhanced Tactical Flow Management System) flight data (EFD)

Delay propagation - Introduction



MIRROR HMI: TACT demand at 11:00utc for LFPO late evening arrivals on 13-07-2019 based on ETFMS (Enhanced Tactical Flow Management System) flight data (EFD) + predictions from machine learning model

Delay propagation - Model

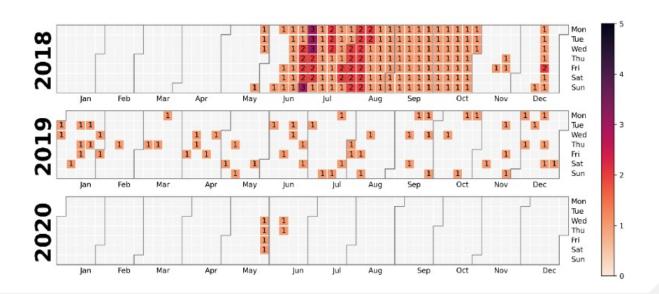
- One tasks
 - Predict the arrival delay *distribution* (mean and standard deviation), of each flight in the sequence, modelled as the difference between the Actual and the Scheduled In-Block Times (AOBT – SIBT)

Trained to minimise the negative log-likelihood

- One version:
 - 1. Bi-directional Recurrent Neural Network (BiRNN) sequence of flights (for each light, the most up-to-date information)
- Two sources of data
 - 1. Enhanced Tactical Flow Management System (ETFMS) flight data messages (EFD) collected by the Network Manager (NM)
 - 2. Airline schedules
 - SIBT and scheduled off-block time (SOBT)

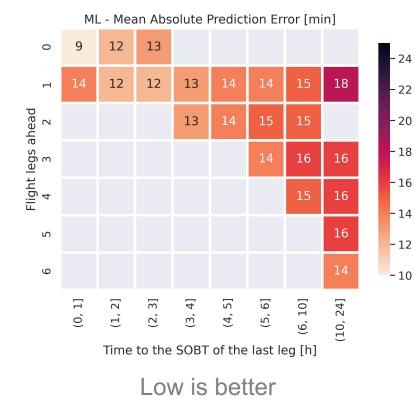
Delay propagation - Experiment

- Training
 - 300 days of 2019
- Testing:
 - 60 days of 2019
 - June to December 2018
 - COVID period (January to May 2020)



Delay propagation - Results

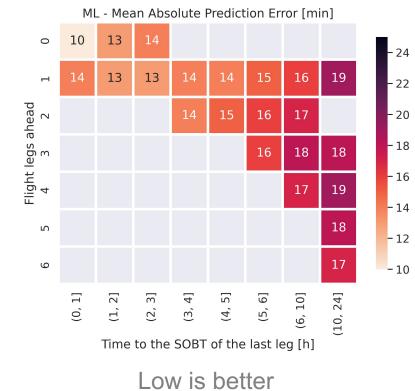
Results on 60 days of 2019



High is better

Delay propagation - Results

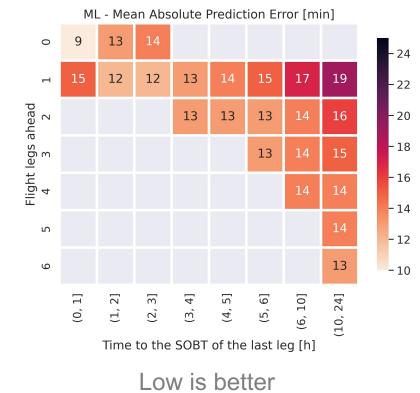
Results on past data (June to December 2018)



High is better

Delay propagation - Results

Results on COVID period (January to May 2020)



High is better

More info:

Dalmau, R. et. al. Early Detection of Night Curfew Infringements by Delay Propagation with Neural Networks. 2021. 14th USA/Europe Air Traffic Management Research and Development Seminar (ATM2021)

Dalmau, R. et. al. A Machine Learning Approach to Predict the Evolution of Air Traffic Flow Management Delay. 2021. 14th USA/Europe Air Traffic Management Research and Development Seminar (ATM2021)

