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State Estimation for Distribution Network Management

Power systems are deeply changing

I Distribution networks (DNs) host Distributed Energy
Resources (DERs)

I Great potential performance improvement

I DNs will need to be managed in real-time

I state estimation plays a fundamental role

I Classical approaches produce state estimates at the scale of several minutes

I DNs are populated by a number of heterogeneous sensors

I Data fusion of asynchronized measurements

I Process measurements in real-time for faster estimation



Distribution Network Model

I A single phase DN can be modeled as a graph G = (N ,L)

I N = {0, . . . ,N}, L = {(m, n) : m, n ∈ V} collect buses and edges

Nodes

I The substation behaves as an ideal voltage generator (Slack bus) with U0 = 1

I pn, qn are the active power and the reactive power of node n

I vn, θn are the voltage magnitude and angle of node n

I Collect all these quantities in vectors p,q, v,θ



Distribution Network Model

Lines

I r` + ix` impedance of line ` = (m, n), ` ∈ L
I Grid connectivity captured by incidence matrix A ∈ {0,±1}L×(N) and by the matrices
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I R and X are related with the inverse of the bus admittance matrix



Distribution Network Model

Approximated power flow equations

I Define ṽ = v − 1

I Voltages can be approximated as [
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S. Bolognani, F. Dorfler (2015)
Fast power system analysis via implicit linearization of the power flow manifold



Measurement model
I Distribution Networks host a variety of sensors

I For simplicity, I’ll consider only smart meters and PMU

Smart Meters

I Smart meter at bus m measures ym = [pm qm vm]
>

I Let SSM
m be a selection matrix; ym can be written as

ym = SSM
m Φ

[
p
q

]
+ nSM

m

PMUs

I PMUs at bus m measures ym = [pm qm vm θm]
>

I Let SPMU
m be a selection matrix; ym can be written as

ym = SPMU
m Φ

[
p
q

]
+ nPMU

m



Dynamic Distribution Network State Estimation

I The state is x = [p> q>]>

I Different sensors have different sampling and reporting rates

I We want to process measurements as they come in

I The system at every time t is not observable

I the measurements from the sensors reporting at time t are collected in the vector y(t),

y(t) = S(t)Φx(t) + n(t)

I the state estimate at time t is denoted as x̂(t)



Dynamic Distribution Network State Estimation

The state estimator
The state estimate is computed by solving

x̂(t) = arg min
w
‖y(t)− S(t)Φw‖2 + γ‖w − x̂(t − 1)‖2

I The first term is a convex LS term

I The second term is a regularization term that makes the problem strictly convex

I the parameter γ is the inertia parameter

We have the closed form expression

x̂(t) = Λ(t)x̂(t − 1) +
1

γ
Λ(t)Φ>S(t)>y(t)

where Λ(t) is the symmetric and positive definite matrix

Λ(t) = γ(Φ>S(t)>S(t)Φ + γI)−1.



Dynamic Distribution Network State Estimation

Estimator performance

I the maximum state variation is ∆x = maxt ‖x(t)− x(t − 1)‖
I the maximum measurement error is ∆n = maxt ‖n(t)‖
I τ is a constant such that the DSO gathers measurements from every bus at least once

every τ times.

The estimation error ξ(t) = x̂(t)− x(t) is asymptotically
bounded

lim sup
t→∞

‖ξ(t)‖ ≤ τ
(
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= Hb(γ)

The inertia parameter that minimizes the bound is

γ∗ =
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Numerical Tests

I The algorithm has been numerically tested on the
3-phase IEEE 37 bus test feeder

I Red buses are endowed with PMUs

I Black buses are endowed with Smart Meters

I The network states are the power injections

I State estimation performed every minute

I # meas ≤ 10

1

23

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21 22

23

24

25

26

27

28

2930

31

32

33 34

35

36

smart meter

PMU



Simulation Setup

PMUs

I provide measurements every minute

I introduce a relative error of 0.05 %

Smart Meters

I provide measurements once every hour

I introduce a relative error of 0.5 %

The time after which the system is observable is τ = 1 hour



Effect of the inertia parameter γ
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I Small γ makes the estimator very sensitive to noise

I Big γ makes the estimator slow in tracking the state

I γ∗ gives almost optimal performance (γ+)



Comparison with a classical Least Squares Estimator (LSE)

I LSE need a #meas ≥ #states

I When #meas < #states, pseudo-measurements are used

I The last measurements are used as pseudo-measurements

LSE
The state estimate is computed by solving

x̂LS(t) = arg min
w
‖y(t)− S(t)Φw‖2 + ‖yPM − SPMΦw‖2

I The first term, built with actual measurement, is convex

I The second term, built with pseudo-measurements, makes the problem strictly convex



Comparison with a classical LSE

Power estimation error
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Voltage estimation error
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I Voltages are computed solving the Power Flow with the estimated powers

I The initial transitorial behavior is due to the fact that there are not enough
pseudo-measurements to make the problem well-posed

I The dynamic estimator outperform the LSE



Conclusions and future developments

We proposed a dynamic state estimator that

I can handle systems with heterogeneous sensors

I is well suited for DNs that are not observable

I outperforms the classic LSE

Future developments include

I adding constraints to the optimization problem

I the use the nonlinear power flow equations
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