An Interpretable Probabilistic Model for Short-Term Solar Power Forecasting

Georgios Mitrentsis

Outline

- 1. Introduction
- 2. Our approach
- 3. Natural gradient boosting (NGBoost)
- 4. SHAP method
- 5. Power and meteorological data
- 6. Results
- 7. Conclusion

Motivation

The ongoing transition of the power system towards a fossil-fuel-free system has led to a wide **integration of renewable energy sources** (RES) worldwide.

The **stochastic nature** of RES power induced by volatile weather conditions hinders the **reliable electricity supply**.

RES are typically connected to the grid through **power electronics** leading to declining system inertia. The system operates close to **stability margins**.

Accurate and reliable power forecasting can alleviate those challenges allowing for a large-scale RES integration.

Current issues - Forecasting

- It is based on complex machine learning models which are considered **black-boxes**.
- The more complex become those models, the harder it gets to understand them and explain their results.

Current issues - Applications

System Operators

Power Traders

Even at **big technology companies**, many bugs in machine learning pipelines **may not be discovered**¹!

[1] M. Zinkevich, "Rules of machine learning: Best practices for ML engineering," 2017.

Schematic representation

• We propose the application of the natural gradient boosting (**NGBoost**) algorithm for yielding **probabilistic** PV power **forecasts**.

- We propose the application of the natural gradient boosting (**NGBoost**) algorithm for yielding **probabilistic** PV power **forecasts**.
- We combine it with Shapley additive explanation (SHAP) values, which is the unique consistent attribution method that can provide theoretical optimal **explanations** about the predictions of a model.

- We propose the application of the natural gradient boosting (**NGBoost**) algorithm for yielding **probabilistic** PV power **forecasts**.
- We combine it with Shapley additive explanation (SHAP) values, which is the unique consistent attribution method that can provide theoretical optimal **explanations** about the predictions of a model.

- We propose the application of the natural gradient boosting (**NGBoost**) algorithm for yielding **probabilistic** PV power **forecasts**.
- We combine it with Shapley additive explanation (SHAP) values, which is the unique consistent attribution method that can provide theoretical optimal **explanations** about the predictions of a model.

Natural Gradient Boosting (NGBoost)

NGBoost

- NGBoost is a **gradient boosting algorithm** for solving **probabilistic** regression problems.
- Gradient boosting algorithms are based on the **sequential training** of several base learners.
- Each learner is optimized by minimizing the current **residual** as estimated by the ensemble of the previous learners.

- **Base learners**: Shallow decision trees have been proved to be an effective choice.
- **Distribution**: Normal, Exponential, Laplace, ...
- **Scoring rule**: Logarithmic score, CRPS

SHAP

Model interpretability

SHAP

- **Model interpretability** is usually defined by a set of **feature attribution** values that quantify the influence of each input feature on the model output.
- The estimation of the feature attributions can be seen as a **cooperative game theory** problem, where each **feature** (player) contributes **differently** to the game.

Fairness properties:

- Additivity (amounts sums up to the final reward)
- Consistency (more contribution \rightarrow not less money)

sonnen

Model interpretability

SHAP

- The SHAP method estimates the influence of a feature by observing how the model behaves **with** and **without** that feature.
- Those **different combinations** result in a computationally challenging calculation:

• **Tree based models** enjoy the exact calculation of SHAP values in **polynomial** instead of exponential time¹.

[1] Lundberg, Scott M., et al. "From local explanations to global understanding with explainable Al for trees." Nature machine intelligence 2.1 (2020): 56-67.

Power and Meteorogical Data

Power and Meteorological Data

- Time series data from two PV parks (3.2MW and 1.8MW) located in Southern Germany (BW) are employed.
- **Time resolution**: 15 min
- Forecasting horizon: 36 hours (recursive multi-step predictions 15 min. intervals)
- **Training set**: 1 year, **Test set**: following month
- Data from 22:00 to 06:00 (night hours) are discarded from the recorded dataset.
- Input features:
 - Weather data (forecasts): temperature, relative humidity, precipitation, wind speed, ground level solar radiation
 - *Temporal data*: month, time of the day (hour)
 - *Lagged power values*: t-15, t-30, t-45
- We map the cyclical month variable onto a unit circle:

 $month_sin = sin(2\pi \cdot month/12)$ $month_cos = cos(2\pi \cdot month/12)$

Results Comparative results

 We compare the proposed NGBoost with lower upper bound estimation (LUBE), Gaussian process (GP), and persistence (only for point forecasts).

sonnen

Results Individual predictions

Interpretation of point forecasts

- SHAP summary plots provide a **detailed insight** about the model.
- Each **dot** corresponds to **a training example**, and it is **colored** based on **how big is the value** of the respective feature.

Interaction plots

• SHAP interaction plots capture pairwise interactions between features.

Interpretation of uncertainty (PIs)

- SHAP summary plots provide a detailed insight about the model.
- Each dot corresponds to a training example, and it is colored based on how big is the value of the respective feature.

Results Interaction plots

• SHAP interaction plots capture pairwise interactions between features.

Results Model interpretation

- A detailed analysis of the derived SHAP values revealed that the forecasting models learned some **nonlinear feature relationships** that follow **known physical properties** and **human logic and intuition!**
- This outcome may have a significant impact on **tackling the missing trust** in machine learning models and thus, help them become widespread.

Results Feature selection

- Based on model interpretation, **precipitation, temperature**, and **wind speed** are deployed only for a small number of observations by the point forecasting model while their contribution to estimating the uncertainty related to a prediction is rather negative.
- Precipitation, temperature, and wind speed were **discarded**, and the model was retrained.
- There was an **increase** in accuracy of around **6%** for RMSE and around **10%** for CRPS! This result may be caused by a local optimum solution due to the higher dimensionality of the first models.

Conclusion

Conclusion

- We propose a probabilistic forecasting method that yields highly accurate and reliable forecasts while providing full transparency on its predictions.
- Based on a thorough comparison using both deterministic and probabilistic metrics, we showed that NGBoost can achieve **better performance** than GP and LUBE, regardless of the seasonal weather and power variations.
- A detailed analysis of the derived SHAP values revealed that the forecasting models came up with some nonlinear feature relationships that follow **known physical properties** and **human logic and intuition**.
- Apart from explaining individual predictions, SHAP values were employed for the **optimal feature selection**.
- No unusual or surprising relationship was developed by the proposed model. This finding is of utmost importance considering that **debugging machine learning** models is an extremely challenging task.

Thank you.

predictive uncertainty.

• Uncertainty information about future outcomes.

Results Probabilistic forecasting

PVP1: Day-ahead PV power forecasts using NGBoost.

• The NGBoost algorithm was able to yield highly accurate and sharp probabilistic forecasts.

Interaction plots

• SHAP interaction plots capture pairwise interactions between features.

